• Title/Summary/Keyword: 습지정책

Search Result 117, Processing Time 0.028 seconds

A Study on the Total Pollutant Load Management of Masan Bay Using GIS Technique (GIS 기법을 이용한 마산만 오염총량관리에 관한 연구)

  • Cho, Bo-Hyun;Yang, Keum-Chul
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.89-99
    • /
    • 2012
  • This study aims to develop the Masan bay special management system of the point and nonpoint sources of pollution using GIS as part of the Integrated Management System of the Masan Bay Special Management Area and utilize Total Pollution Loads Management System in Masan Bay more systematically and scientifically. The result of the pollution sources management at the Masan bay in conjunction with GIS was made possible the comparison of the source of pollution and the pollutant load among each administration area. It also developed Arc-GIS watershed management program which enables to estimate the population for discharge facilities, the water use of domestic population and commercial population, and pollutant load and discharge load of COD, TN and TP by the administration areas, years, and usages. In addition, this study anticipated minimizing temporal, economical efforts in utilizing large amounts of property and space utilization data and expediting the decision making process of policies in relation to the systematic and effective management system of pollutant loads at the Masan bay area. Further studies are required to plan the systematic management of the point and nonpoint sources of pollution and complement the watershed management system using GIS program for pollutant load which enables to predict the current and future state of point and nonpoint sources.

Sediment Unit Loads from Developing Areas during Storms (개발사업장에서의 강우시 토사 유출원단위 산정)

  • Kim, Cheol Min;Lee, Eun Ju;Lee, So Young;Kim, Young Chol;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.10 no.1
    • /
    • pp.59-68
    • /
    • 2008
  • Three phases of development in construction projects (i.e. pre-development, construction and post construction) diversely effect the environment, hydraulics and ecosystem. Currently, the domestic environmental policy is in control of the various environmental hazards produced after completion of development operations. Nevertheless, with the enforcement of water pollution total amount management system, improving the water quality; also the water and ecosystem preservation law recommends enforcing the sediment management for development operations in order to lessen the negative impacts to the environment. Recently, the country is experiencing difficulties in various development project locations due to insufficiency of interpreting the fundamental data for sediment loss and miscalculation of soil loss unit loads of sediment. This research utilizes data from 2000 to 2005 discussing a total of 1,036 environment impact assessment projects gathered from various ministries and offices namely Ministry of Environment (MOE), Ministry of Agriculture, the Office of Forestry, and Ministry of Construction and Transportation. Moreover, quantity of sediment from high land agriculture reports involving contaminant discharge characteristic investigation previously did concerning old land agriculture and So-Yang lake non-point pollution source management area as well as management measured data from MOE. The findings of this study reveal that the highest soil loss rate occurred from mountain district for pre-development and post construction and sports facility during construction.

  • PDF

Development Hybrid Filter System for Applicable on Various Rainfall (다양한 강우사상에 대응 가능한 침투여과형 기술개발)

  • Choi, Jiyeon;Kim, Soonseok;Lee, Soyoung;Nam, Guisook;Cho, Hyejin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.535-541
    • /
    • 2013
  • The urbanization affects significantly on a natural water circulation system by increasing the imperviousness rate. It is also negatively affecting on urban temperature, environmental pollution, water quality, and aqua-ecosystems. The Korea MOE (Ministry of Environment) adapted a new environmental policy in order to reduce the impact of urbanization, which is the Green Stormwater Infrastructure (GSI) program. The GSI can be achieved by protecting conservable green spaces, enlarging more green spaces, and constructing more permeable pavements. The GSI is including many different techniques such as bioretention, rain garden, infiltration trench and so on. Also It is the infrastructures using natural mechanisms of soils, microorganisms, plants and animals on a water circulation system and pollutant reduction. In this research, a multi functional GSI technology with infiltration-filtration mechanisms has been developed and performed lab-scale tests to evaluate the performances about infiltration rate restoration and pollutant reduction. The most of pollutants including metals, organics and particulates were reduced about 50~90% due to water infiltration and storage functions. The clogging was found when the TSS loading rate was reached on $8.3{\sim}9.0kg/m^2$, which value is higher than the values in literatures. It means the new technology can show high performances with low maintenances.

Future Projection in Inflow of Major Multi-Purpose Dams in South Korea (기후변화에 따른 국내 주요 다목적댐의 유입량 변화 전망)

  • Lee, Moon Hwan;Im, Eun Soon;Bae, Deg Hyo
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.107-116
    • /
    • 2019
  • Multi-purpose dams in Korea play a very important role in water management such as supplying water for living, industrial water, and discharging instream flow requirement to maintain the functions of river. However, the vulnerability of dam water supply has been increased due to extreme weather events that are possible linked to climate change. This study attempts to project the future dam inflow of six multi-purpose dams by using dynamically downscaled climate change scenarios with high resolution. It is found that the high flows are remarkably increased under global warming, regardless of basins and climate models. In contrast, the low flows for Soyangang dam, Chungju dam, and Andong dam that dam inflow are originated from Taebaek mountains are significantly decreased. On the other hand, while the low flow of Hapcheon dam is shown to increase, those of Daecheong and Sumjingang dams have little changes. But, the low flows for future period have wide ranges and the minimum value of low flows are decreased for all dams except for Hapcheon dam. Therefore, it is necessary to establish new water management policy that can respond to extreme water shortages considering climate change.

The Change Analysis of Plant Diversity in Protected Horticulture of Agricultural Ecosystems (시설원예단지 조성이 농업생태계의 식생다양성에 미치는 영향 분석)

  • Son, Jin-Kwan;Kong, Min-Jae;Kang, Dong-Hyeon;Park, Min-Jung;Yun, Sung-Wook;Lee, Si-Young
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.173-182
    • /
    • 2016
  • Although the ecosystem extends numerous functions for the benefit of humankind, construction of horticultural facilities can potentially lead to the degeneration of some of these functions owing to the expansion of impervious regions and loss of habitats. Thus, this study aimed to examine the effect of construction of horticultural facilities on plant biodiversity. Analysis of the vegetation distribution characteristics showed that horticultural facilities had significantly lower plant diversity than did rice paddies. Hence, the proposed approach involved low-impact development, arrangement of habitat space, plant preservation, restricted use of chemical fertilizer, habitat creation, and reduced preservation cost. Lifestyle analysis suggested the importance of developing favorable environments for the growth of annual plants and aquatic plants. In all, 20 species of naturalized plants belonging to 10 families were identified. Furthermore, the proportion of these naturalized plants was higher in glass greenhouses and multi-span greenhouses, suggesting the advantages of employing natural soil mulching while avoiding concrete mulching. Statistical analysis was performed to validate the results, which suggested that impervious regions be converted to natural soils. Collectively, the findings of this study are expected to be used for establishing policies for the construction of eco-friendly and ecological horticultural facilities; this may aid the maintenance of sustainable agricultural landscapes and large-scale development of the reclaimed lands.

A Review on the Management of Water Resources Information based on Big Data and Cloud Computing (빅 데이터와 클라우드 컴퓨팅 기반의 수자원 정보 관리 방안에 관한 검토)

  • Kim, Yonsoo;Kang, Narae;Jung, Jaewon;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.100-112
    • /
    • 2016
  • In recent, the direction of water resources policy is changing from the typical plan for water use and flood control to the sustainable water resources management to improve the quality of life. This change makes the information related to water resources such as data collection, management, and supply is becoming an important concern for decision making of water resources policy. We had analyzed the structured data according to the purpose of providing information on water resources. However, the recent trend is big data and cloud computing which can create new values by linking unstructured data with structured data. Therefore, the trend for the management of water resources information is also changing. According to the paradigm change of information management, this study tried to suggest an application of big data and cloud computing in water resources field for efficient management and use of water. We examined the current state and direction of policy related to water resources information in Korea and an other country. Then we connected volume, velocity and variety which are the three basic components of big data with veracity and value which are additionally mentioned recently. And we discussed the rapid and flexible countermeasures about changes of consumer and increasing big data related to water resources via cloud computing. In the future, the management of water resources information should go to the direction which can enhance the value(Value) of water resources information by big data and cloud computing based on the amount of data(Volume), the speed of data processing(Velocity), the number of types of data(Variety). Also it should enhance the value(Value) of water resources information by the fusion of water and other areas and by the production of accurate information(Veracity) required for water management and prevention of disaster and for protection of life and property.

Changes and Influences of Stream Water Quantity due to Urbanization: Focusing on Urban Streams in Gyeonggi-do (도시화에 따른 하천수량 변화 및 영향_경기도 도심하천을 중심으로)

  • Noh, Huiseong;Jo, Dongho;Kim, Yonsoo;Ahn, Taejin
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.491-500
    • /
    • 2017
  • Stream water quantity is the most basic, fundamental and important element for stream water quality and for conservation of ecological environment. This study aims to analyze causes of changes in stream water quantity based on the percentage of impervious surface area (%ISA) in urban streams of Gyeonggi-do, and also to present a method to secure water quantity of urban streams in Gyeonggi-do and data to be applied to River Management Policy. For this purpose, the Anyangcheon watershed, the Tancheon watershed, and the Osancheon watershed were selected as samples of the urban streams. In addition, the stream water quantity and the changes in stream water quality which were based on the amount of ISA, and methods to directly and indirectly secure stream water quantity were investigated. The results are as follows. The amounts of ISA of the Anyangcheon watershed, of the Tancheon watershed, and of the Osancheon watershed showed a 5.32%, 6.32%, and 7.22% increase, respectively, from 2014 which was approximately 10 years ago. The runoff coefficient generally increased as the amount of ISA was increased. Water reuse quantity of stream in the Tanchon watershed had a positive effect on securing stream water quantity, but both in the Anyangcheon watershed and in the Osancheon watershed, it did not have a positive effect on that. However, water reuse quantity of stream improved the water quality of each stream.

A Study on the Development of GIS Based Water Quality Simulation System using HSPF in Basin of Yeong-san River (HSPF 모델을 적용한 GIS기반의 영산강 유역 수질모의 시스템 개발에 관한 연구)

  • Lee, Sung Joo;Kim, Kye Hyun;Lee, Chol Young;Lee, Geon Hwi
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.645-656
    • /
    • 2012
  • The basin environment has been seriously damaged by reckless development during the past half century. The demand for management in the basin has increased, but the system for prediction and management is not sufficient. Therefore, the aim of this study is to design a GIS-based water quality linkage system using the most suitable simulation, HSPF (Hydrological Simulation Program-Fortran) in this basin of South Korea. To achieve this, data of HSPF model for simulation and GIS data for spatial analysis is collected. And the system applied linkages of the water quality model and GIS such as Loose coupling. Also, the major function of the system was designed as a modular unit. Ultimately, the system is developed using development language of VB.NET from Microsoft and ArcObjects component from ESRI based on design for a module unit. The water quality simulation system can be supported to prediction and management for basin environment of Yeong-San River. In the future study, scenario will be established using the result of HSPF model And will be expected to support to situation of future basin and policy making.

Determination of Detention Basin Size for NPS Control in TMDL Area (수질오염총량관리제하에서 친환경 개발사업을 위한 자연형 비점저감시설의 규모 산정)

  • Jung, Yong-Jun;Lee, Eun-Ju;Lee, So-Young;Lim, Keong-Ho;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Since 2000, environmental policies and regulations in Korea are rapidly changing to TMDL(Total Maximum Daily Load) and nonpoint source control. This is due to bad water quality in drinking water sources. Although many environmental facilities having high removal efficiency are constructed and applied in nationwide for controling various pollutants from wastewaters, the water quality in rivers is worse and worse because of nonpoint pollution. In fact, TMDL is a new environmental regulation controling total daily loadings from watershed areas. Actually, the nonpoint pollutant is originated from various landuses and its control is based on TMDL regulation. Therefore, this research is performed to determine the size of detention basin to control nonpoint pollutants from resort developing areas. The detention basin is one of best management practices, which is useful for controling pollutants and flooding from the developing areas. However, it should be designed and constructed with cost effective method. Recent 10 years rainfall data are used to determine the size of detention basin. The cost effective size is determined to 7.4mm accumulated rainfall.

  • PDF

Characteristics of Stormwater Runoff discharged from vinyl greenhouse growing area in farming area (농촌의 비닐하우스 재배지역에서 배출되는 강우유출수의 특성)

  • Jeon, Je Chan;Lee, Sang Hyeub;Kwon, Koo Ho;Lee, Jea Woon;Kwon, Heun Gag;Min, Kyung Sok
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.413-422
    • /
    • 2014
  • In national water quality policy, it changed previous regulation method that focuses on concentration of pollutants in effluent water to the way that regulates total amount of pollutants. The target of water quality in watershed of each river was set up, as the government instituted Total Maximum Daily Loads(TMDL). In order to accomplish successfully TMDL, it requires that the amount of pollutant loads discharged from point and nonpoint pollutant source should be investigated. This study, therefore, conducted the monitoring of the stormwater runoff at field region in farming area. And pollutants loads and unit loads discharged from field region results is calculated. As a result, the concentration of pollutants were calculated as follows: 10.5 BOD mg/L, 19.6 $COD_{Mn}$ mg/L, 4.5 TN mg/L and 2.4 TP mg/L. The unit load of BOD, $COD_{Mn}$, TOC, TSS, TN and TP discharged from field region, also, were determined to $31.8kg/km^2/yr$, $56.7kg/km^2/yr$, $8.5kg/km^2/yr$, $560.9kg/km^2/yr$, $8.3kg/km^2/yr$ and $5.1kg/km^2/yr$, respectively. It was identified that there were some differences of unit loads between the results obtained from this study and previous one. To calculate exact unit loads, therefore, long term monitoring should be conducted.