• Title/Summary/Keyword: 습식제련

Search Result 44, Processing Time 0.028 seconds

Electrochemical properties of dimensionally stable anodes materials for hydrometallurgy of Non-ferrous metal application (비철금속 제련용 DSA 재료의 전기화학적 특성)

  • Kim, Hyun-Sik;Lee, Hae-Yon;Huh, Jeoung-Sub;Kim, Bong-Seo;Lee, Dong-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.313-316
    • /
    • 2002
  • 비철금속 습식 제련용 고효율 장수명의 양극을 개발하기 위해서 산소 과전압이 낮은 $MnO_{2}$를 촉매로 사용하여 반도체 산화물계의 산소선택성 전극을 제조하고 산화물 coating층의 미세구조와 전기화학적 특성을 분석하였다. PVDF : $MnO_{2}$의 함량비플 1 : 1 에서 1 : 40까지 정량적으로 변화시켰고, 용제의 점도에 지배적인 영향을 미치는 DMF의 함량을 각각의 고정된 PVDF : $MnO_{2}$의 함량비에서 변화시켜 용제를 제조하였으며 4% $HNO_{3}$ 용액에 세척된 Pb전극을 1.5 mm/sec 의 속도로 5회 dipping 하였다. PVDF : $MnO_{2}$ = 1 : 6인 경우 PVDF의 양이 증가하고 DMF의 양이 감소할수록 피막층이 두꺼워지고 PVDF : DMF = 4 : 96인 경우 pb 전극의 피막층이 얇기 때문에 박리현상이 일어났으며 이는 산화물 용제의 낮은 점도 때문인 것으로 판단된다. 또한 PVDF : DMF = 10 : 90의 경우는 5회 dipping 하여 약 $150{\mu}m$의 피막층을 형성하였다. PVDF : Mn02의 함량비가 1:1에서 1:6 까지는 DMF의 함량에 무관하게 전극 특성이 나타나지 않았지만 $MnO_{2}$의 양이 상대적으로 증가하면 cycle 이 증가하더라도 거의 일정한 전류 값을 갖고$MnO_2$와 PVDF의 비가 20:1 이상의 조성에서는 균일한 CV 특성을 나타냈다 이는 $MnO_{2}$가 효과적으로 촉매 작용을 한 것으로 판단되며 anodic polarization에 의한 산소 발생 과전압도 약 1.4V 정도로 감소되었다.

  • PDF

A Study on Separation of Limonite and Saprolite from Nickel Laterite Ores (니켈라테라이트광으로부터 리모나이트 및 사프로라이트의 분리선별 연구)

  • Kim, Kee-Seok;Seo, Joo-Beom;Bea, In-Kook;Bae, Kwang-Hyun;Yoo, Kwang-Suk;Lee, Jae-Young;Kim, Hyung-Seok
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.12-21
    • /
    • 2014
  • Nickel oxide ores are composed of two kinds of minerals; one is saprolite that is processed by smelting to obtain nickel products, and the other is limonite that is used in hydrometallugical processes. It is not efficient economically to process the mixture of limonite and saprolite, so the processes to saparate the ore mixture should be developed. In the present study, the mixture was separated by dry-classification after liberationg using grindability difference between limonite and saprolite. Consequently, it is possible to obtain the limonite with less than 10% of Mg+Si contents, which could be treated by hydrometallurgical processes, when the limonite contain less than 30% of saprolite.

Ammoniacal Leaching for Recovery of Valuable Metals from Spent Lithium-ion Battery Materials (폐리튬이온전지로부터 유가금속을 회수하기 위한 암모니아 침출법)

  • Ku, Heesuk;Jung, Yeojin;Kang, Ga-hee;Kim, Songlee;Kim, Sookyung;Yang, Donghyo;Rhee, Kangin;Sohn, Jeongsoo;Kwon, Kyungjung
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.44-50
    • /
    • 2015
  • Recycling technologies would be required in consideration of increasing demand in lithium ion batteries (LIBs). In this study, the leaching behavior of Ni, Co and Mn is investigated with ammoniacal medium for spent cathode active materials, which are separated from a commercial LIB pack in hybrid electric vehicles. The leaching behavior of each metal is analyzed in the presence of reducing agent and pH buffering agent. The existence of reducing agent is necessary to increase the leaching efficiency of Ni and Co. The leaching of Mn is insignificant even with the existence of reducing agent in contrast to Ni and Co. The most conspicuous difference between acid and ammoniacal leaching would be the selective leaching behavior between Ni/Co and Mn. The ammoniacal leaching can reduce the cost of basic reagent that makes the pH of leachate higher for the precipitation of leached metals in the acid leaching.

Recovery of the Vanadium and Tungsten from Spent SCR Catalyst Leach Solutions by Hydrometallurgical Methods (SCR 폐촉매 침출액으로부터 습식제련법에 의한 바나듐, 텅스텐의 회수)

  • Choi, In-Hyeok;Moon, Gyeonghye;Jeon, Jong-Hyuk;Lee, Jin-Young;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2020
  • In new millennium, wide-reaching demands for selective catalytic reduction (SCR) catalyst have been increased gradually in new millennium. SCR catalyst can prevent the NOx emission to protect the environment. In SCR catalyst the main composition of the catalyst is typically TiO2 (70~80%), WO3 (7~10%), V2O5 (~1%) and others. When the SCR catalysts are used up and disposed to landfills, it is problematic that those should exist in the landfill site permanently due to their extremely low degradability. A new advanced technology needs to be developed primarily to protect environment and then recover the valuable metals. Hydrometallurgical techniques such as leaching and liquid-liquid extraction was designed and developed for the spent SCR catalyst processing. In a first stage, V and W selectively leached from spent SCR catalyst, then both the metals were processed by liquid-liquid extraction process. Various commercial extractants such as D2EHPA, PC 88A, TBP, Cyanex 272, Aliquat 336 were tested for selective extraction of title metals. Scrubbing and stripping studies were tested and optimized for vanadium and tungsten extraction and possible separation. 3rd phase studies were optimized by using iso-decanol reagent.

Extractive Metallurgy and Separation Technology of Rare Earth Ores (교토류광석(橋土類鑛石)의 제련(製鍊) 및 분리(分離) 기술(技術))

  • Lee, Man-Seung;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.27-35
    • /
    • 2010
  • Rare earth alloys and compounds are the raw materials for the manufacture of advanced materials. Although domestic monazite ores have been found, there are some difficulties in recovering rare earth from these ores. Rare earth ores are found in few countries and these countries put an embargo on the export of rare earth ores for the protection of their industry. We gathered some information on the hydrometallurgical and pyrometallurgical processes to recover rare earths from bastnasite, monazite, and xenotime which consist of 95% of the total rare earth ores. Since rare earth with the purity more than 6N is needed for use in advanced materials, some separation methods such as fractional crystallization, precipitation, ion exchange, and solvent extraction were introduced.

Recovery of Cobalt from Waste Cathodic Active Material Generated in Manufacturing Lithium Ion Batteries by Hydrometallugical Process (리튬이온전지 제조공정의 폐양극활물질로부터 습식제련공정에 의한 코발트의 회수)

  • Swain Basudev;Jeong Jinki;Kim Min Seuk;Lee Jae-chun;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.28-36
    • /
    • 2005
  • A hydrometallurgical process to leach cobalt from the waste cathodic active material, $LiCoO_{2}$, and subsequently to separate it by solvent extraction was developed. The optimum leaching conditions for high recovery of colbalt and lithium were obtained: 2.0 M sulfuric acid, 5 $vol.\%$ hydrogen peroxide, $75^{\circ}C$ leaching temperature, 30 minutes leaching time and an initial pulp density of 100 g/L. The respective leaching efficiencies for Co and Li were $93\%$ and $94.5\%$. About $85\%$ Co was extracted from the sulfuric acid leach liquor containing 44.72 g/L Co and 5.43 g/L Li, using 1.5 M Cyanex272 as an extractant at the initial pH 5.0 and in organic to aqueous phase ratio of 1.6:1 under the single stage extraction conditions. The Co in the raraffinate was completely extracted by 0.5 M Na-Cyanex272 at the inital pH 5.0, and an organic to aqueous phase ratio of 1;1. The cobalt sulfate solution of higher than $99.99\%$ purity could be recovered from waste $LiCoO_{2}$, using a series of hydrometallurgical processes: sulfuric acid leaching of waste $LiCoO_{2}$- solvent extraction of Co by Na-Cyanex 271 - scrubbing of Li by sodium carbonate solution - stripping of Co by sulfuric acid solution.

The Current Status of Cyanide Uses, Regulations, and Treatment in Gold Mining (금 제련에 사용되는 시안의 사용, 규제 및 처리 현황)

  • Park, Jeonghyun;Shin, Doyun;Park, Hyunsik;Jeong, Jinki;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.61-66
    • /
    • 2015
  • Cyanidation has been used worldwide to recover gold from primary ore or concentrate. The use of cyanide is however becoming an emerging issue because of the toxic residue and wastewater made from the process. The cyanide-containing wastewater should be treated properly, obeying the environmental standard and regulations. In the present article, the domestic and international uses, regulations, and treatment technologies of cyanide in gold mining were investigated as a feasibility study to develop a cyanide treatment process as well as the cyanidation process. A biological cyanide treatment process to develop a zeroemission gold recovery and wastewater treatment process was also briefly introduced.

Analysis of Oxidation-reduction Equilibria in Aqueous Solution Through Frost Diagram (Frost도를 이용한 수용액의 산화-환원반응 평형 해석)

  • Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.3-8
    • /
    • 2017
  • Oxidation-reduction reaction is one of the most important reactions occurring in the aqueous phase. Analysis of the equilibria related to these oxidation-reduction reactions is of great value in designing many unit operations in hydrometallurgy, such as leaching, separation and electrochemical reactions. The construction of Frost diagram was discussed in this work. The conditions at which disproportionation and proportionation reactions can occur were explained by analyzing Frost diagram together with Latimer table. The information which can be obtained from Frost diagram was discussed.