• Title/Summary/Keyword: 슬롯 라인

Search Result 60, Processing Time 0.026 seconds

Design of Strip Line Fed Slot Antenna for 5GHz(WLAN, ISM Band) Application (스트립라인 급전을 이용한 5GHz(WLAN, ISM Band)대역용 슬롯 안테나 설계)

  • 전찬익;이범선
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.100-103
    • /
    • 2002
  • 본 논문에서는 무선 인터넷 사업 및 초고속 정보통신 인프라 구축과 관련하여 WRC-2003에서 새롭게 분배하기로 결정된 5GHz대역(5.135~5.35GHz, 5.47~5.725GHz)과 기존의 ISM 대역(5.75~5.85GHz)에 동시에 사용할 수 있는 스트립 라인 급전을 이용한 슬롯 안테나를 설계하였다. 무선통신 시스템의 박형화를 위하여 평면 내장형으로 설계하였으며 안테나의 크기는 5.04$\times$12.55$\times$2.0[mm]이며 FR-4($\varepsilon$$_{r}$=4.6)를 substrate로 사용하였다. 중심주파수 5.749GHz를 중심으로 10㏈ 기준대역폭 28.54%(4.929~6.561GHz)fmf 갖는다. 안테나의 이들은 약 4.2㏈i이다.

  • PDF

Equivalent Circuit Modeling of Aperture-Coupled Microstrip-to-Vertically Mounted Slotline Coupler (개구면을 통한 마이크로스트립-수직 슬롯 라인 결합 구조의 회로망 해석과 모델링)

  • Nam, Sang-Ho;Kim, Jeoung-Phill
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.357-365
    • /
    • 2009
  • A general analysis of a microstrip-to-vertically mounted slotline(VMS) coupler is presented with a view to developing an equivalent circuit, and the efficient evaluation of the related circuit element values. Based on this theory, the effects of frequency and structure parameters such as aperture length and VMS width on the characteristics of the coupler are studied. In order to check the validity of the proposed analysis and design theory, a C-band linearly tapered slot antenna fed by an aperture-coupled back-to-back microstripline-to- VMS coupling structure is optimally designed using a hybrid genetic algorithm. Moreover, the computed characteristics from the network analysis is compared to the measurement and simulation results. The obtained results fully validate the efficiency and accuracy of the proposed network model.

A study of a planar active phased array antenna using two-dimensionally coupled slot-lines (이차원 슬롯라인 결합을 이용한 이차원 능동 위상배열 안테나에 관한 연구)

  • 이태윤;김준모;윤영중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1963-1970
    • /
    • 1998
  • In this paper, a two-dimensional slotline coupling structure is proposed for the planar active phased array antenna system with scanning the beam by coupled oscillators without phase shifters. The operating characteristics are analyzed and experimentally demonstrated. The proposed two-dimensional slotline coupling structure consists of $|{=}|$-type slotline in the ground plane for the coupling of E-plane and H-plane. From the simulation results of coupling strength with the variation of width, length and the number of slotlines, the optimal coupling structure is proposed and applied to $2{\times}5$ elements of planear phased array antenna. The experimental results show that the beamwidth of E-plane and H-pland are $42^{\circ}$ and $15^{\circ}$, respectivly, and the scanning range is from $-20^{\circ}$ to $15^{\circ}$ from the broadside. Therefore, it is shown the two-dimensional slotline coupling structure for oscillator-type active phased array antenna can be applied to the planar phased array antenna system.

  • PDF

Transmission Line using Microstrip-Slotline Transition Technology and Its Application to Power Divider (마이크로스트립과 슬롯라인 천이기술을 이용한 전송선로 구현과 전력 분배기에 응용)

  • Kim, Young;Sim, Seok-Hyun;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.687-692
    • /
    • 2013
  • This paper presents a compact power divider using microstrip-slotline transition technology. By using the microstrip-slotline transition, the ${\lambda}/4$ transmission lines of the divider can be changed to two ${\lambda}/8$ transmission lines in the multilayer structure. In the microstrip-slotline transition, we have used via holes to make a short circuit at the microstrip line and embedded spiral configuration stubs to reduce the electrical length of an open circuit at the slotline end point. For validating the microstrip-slotline technique, we have simulated and implemented the power divider with embedded spiral and via hole configuration circuits at a frequency of 2 GHz. Good agreement between the simulation and the measurement results is obtained at the operating frequency.

Circuit Modeling of Transition from Stripline to Dual Slotline for the Notch Antenna

  • So, Joon-Ho;Kim, Jun-Yeon;Lee, Moon-Que;Cheon, Chang-Yul
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • A circuit model for the transition of stripline to dual slotline and a segmented method to analyze a notch antenna are presented. For the circuit model of the transition, the characteristic impedance, dispersions, and the shorted impedance of dual slotline are calculated and approximated with the closed-form expressions. The segmented analysis method allows to get readily an optimized results for the dual slotline-fed notch antenna. As a design example, a notch antenna is segmented into a 4'h order Marchand balun and a dual slot 134 notch antenna, and tested to show the validity of the proposed circuit model.

  • PDF

A Novel Waveguide-based Ka-band Power Divider/Combiner Using Slotline-to-Microstrip Transitions (슬롯라인-마이크로스트립 변환을 이용한 도파관 형태의 Ka-band 전력 분배/결합기)

  • 정진호;천창율;권영우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.506-511
    • /
    • 2002
  • In this paper, waveguide-based power combiner using conventional slotline-to-microstrip transition was proposed at Ka-band. The proposed 2-way and 4-way power combiner consist of waveguide-to-slotline transition, two or four slotline-to-microstrip transitions, and impedance matching networks. Their structures were simulated and optimized by 3-D FEM simulation. The 2-way power combiner showed a very low back-to-back insertion loss of 1.0 dB and return loss better than 15 dB from 25.7 GHz to 29.8 GHz except the resonant frequency. The 2-way power combining approach was extended to 4-way power combining using slotline tee junction. The 4-way power combiner showed the similar performance to that of 2-way power combiner with 2 GHz smaller bandwidth.

The 4:1(50-Ω:12.5-Ω) microstrip-slot line impedance transformer using a dielectric resonator (유전체 공진기를 이용한 4:1(50-Ω:12.5-Ω) 마이크로스트립-슬롯 선로 임피던스 변환기)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1484-1491
    • /
    • 2020
  • Since the slot line transmits electric and magnetic signals through the slot, the size of the slot greatly affects the signal power loss. In order to have low loss, the slot line is mainly used at a high frequency of above 3GHz on a substrate having a high dielectric constant(er). This paper proposes the 4:1 impedance transformer using a slot line on TLC-30 laminate (h=20mil, er=3.0; Taconic) being a relatively low dielectric constant at a frequency of 1.85GHz. In the proposed impedance transformer, the dielectric resonator is arranged on the slot line to reduce signal loss occurring at the slot line. The proposed 4:1 microstrip-slot line impedance transformer fabricated using a (Zr,Sn)TiO4 dielectric resonator(er=38) has the transmission loss(S21) of -0.375dB and the reflection value(S11) of -27.6dB at 1.855GHz. This confirms that the slot line can be stably used even in a low dielectric constant substrate and a low frequency region by using a dielectric resonator.

Study on the Bandwidth of Microstrip Patch Antenna (슬롯 패치 안테나의 대역폭 확장에 관한 연구)

  • Lee, Chick-Youl
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.581-585
    • /
    • 2013
  • A technique to expand the operating impedance bandwidth of a microstrip patch antenna is presented. The antenna is fed by a truncated T-shaped microstrip line on the ground plane with the rectangular slot. The proposed microstrip patch antenna offers wide bandwidth characteristics with the rectangular slot which has optimized size and position on the ground plane. The simulation result shows a fractional bandwidth of 127.8 %(0.65 to 2.95 GHz) at VSWR 2:1.

High Efficiency V-band Power Combining Modules Using Slotline-to-Microstrip Transition (슬롯라인-마이크로스트립 변환을 이용한 고효율 V-band 전력 결합 모듈)

  • Kim Dong-Ki;Jeong Jin-Ho;Kwon Young-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.580-585
    • /
    • 2005
  • Two high-efficiency and high power power-combing modules were developed using slotline-to-microstrip transition at V-band. Power-combining modules incorporating two MMIC power amplifiers demonstrated combining efficiencies higher than $80\%$(maximum $86\%$) with saturated output power of 22.96 dBm and 22.81 dBm, respectively. The measurement of back-to-back connected combiners demonstrated insertion loss less than 1.2 dB with return loss better than 15 dB around 60 GHz, respectively.

A Branch-Line Hybrid Using Triangle-Patch Type Artificial Transmission Line (삼각 패치형 인공 전송 선로를 이용한 브랜치 라인 하이브리드)

  • Oh, Song-Yi;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.768-773
    • /
    • 2012
  • A branch-line hybrid using microstrip artificial transmission lines(ATLs) with slotted-triangular patches is proposed. The proposed artificial transmission line is compact in structure as well as easy to adjust the characteristic impedance and electrical length of equivalent transmission line by changing the slot's parameters; hence, it is useful for miniaturizing conventional transmission lines. The designed branch-line hybrid, because of the use of the right angled isosceles triangular shaped artificial transmission lines as building blocks, has no useless empty space, and hence optimally miniaturized. A fabricated 3 dB branch-line hybrid shows the coupling variation of ${\pm}0.5$ dB and the phase difference between two output ports of $91^{\circ}{\pm}4^{\circ}$ within 15 % bandwidth at 2.45 GHz center frequency. The size of proposed branch-line hybrid is only 38% of the conventional branch-line hybrid.