• Title/Summary/Keyword: 슬로싱 충격응답

Search Result 8, Processing Time 0.023 seconds

A Study on the Sloshing Impact Response Analysis for the Insulation System of Membrane Type LNG Cargo Containment System (LNG 탱크 방열구조의 슬로싱 충격 응답 해석법에 관한 연구)

  • Nho, In-Sik;Ki, Min-Seok;Lee, Jae-Man;Kim, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.531-538
    • /
    • 2011
  • To ensure the structural integrity of membrane type LNG tank, the rational assessment of impact pressure and structural responses due to sloshing should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the structural responses caused by them also very complex behaviors including fluid structure interaction. So it is not easy to estimate them accurately and huge time consuming process would be necessary. In this research, a simplified method to analyze the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was proposed. This technique basically based on the concept of linear combination of the triangular response functions which are obtained by the transient response analysis under the unit triangular impact pressure acting on structures in time domain. The validity of suggested method was verified through the example calculations and applied to the structural analysis of real Mark III type insulation system using the sloshing impact pressure time histories obtained by model test.

  • PDF

A Study on Simplified Sloshing Impact Response Analysis for Membrane-Type LNG Cargo Containment System (LNG 화물창 단열구조의 슬로싱 충격응답 간이해석법에 관한 연구)

  • Nho, In-Sik;Ki, Min-Seok;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.451-456
    • /
    • 2011
  • To ensure structural integrity of membrane type LNG tank, the rational assessment of the sloshing impact responses of tank structures should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the resulting structural responses show very complex behaviors accompanied with fluid structure interaction. So it is not easy to estimate them accurately and immense time consuming calculation process would be necessary. In this research, a simplified method to analyse the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was studied. The proposed technique based on the concept of linear combination of the triangular response functions which are the transient responses of structures under the unit triangular impact pressure acting on structures. The validity of suggested method was verified through the example calculations and applied to the dynamic structural response analysis of a real Mark III membrane type insulation system using the sloshing impact pressure time histories obtained by model test.

Study on Structural Strength of Mark III type LNG Cargo Containment System by Idealized Triangular Impulse Load (MarkIII LNG 방열 시스템의 강도평가를 위한 삼각형 충격 하중에 대한 구조응답에 대한 연구)

  • Hwang, Se Yun;Kim, Sung Chan;Lee, Jang Hyun;Nho, In Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.615-624
    • /
    • 2014
  • It has been well known the sloshing pressure has complex shape and various patterns. The pattern of sloshing pressure is variously characterized by the pressure amplitude, duration time and skewness. The structural response induced by the sloshing pressure is also affected by the pattern of sloshing pressure and the type of structural members. In order to understand the structural response by the perspective view of categorized pattern, it is more efficient to make simple sloshing pressure pattern than to reflect the complex pressure history. In this study, the sloshing pressures obtained by the small scale model test are simplified with respect to their duration and skewness. Dynamic analyses of Mark-III LNG CCS are then parametrically performed with the consideration of various types of sloshing impact. Meanwhile, the failure pressures given the duration and skewness are investigated after parametric calculations are conducted to investigate the effect of pressure parameters on the structural response.

Fluid Structure Interaction Analysis of Membrane Type LNG CCS Experiencing the Sloshing Impact by Impinging Jet Model (멤브레인형 LNG 화물창의 강도평가를 위해 적용된 분사모델을 이용한 유체구조 연성해석에 관한 연구)

  • Hwang, Se Yun;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-78
    • /
    • 2015
  • The reliable sloshing assessment methods for LNG CCS(cargo containment system) are important to satisfy the structural strength of the systems. Multiphase fluid flow of LNG and Gas Compressibility may have a large effect on excited pressures and structural response. Impinging jet model has been introduced to simulate the impact of the LNG sloshing and analyze structural response of LNG CCS as a practical FSI(fluid structure interaction) method. The practical method based on fluid structure interaction analysis is employed in order to evaluate the structural strength in actual scale for Mark III CCS. The numerical model is based on an Euler model that employs the CVFEM(control volume based finite element method). It includes the particle motion of gas to simulate not only the interphase interaction between LNG liquid and gas and the impact load on the LNG insulation box. The analysis results by proposed method are evaluated and discussed for an effectiveness of FSI analysis method.

Sloshing Impact Response Analysis for Insulation System of LNG CCS Considering Elastic Support Effects of Hull Structures (선체구조의 탄성지지 효과를 고려한 LNG 운반선 방열구조의 슬로싱 충격응답 해석법에 관한 연구)

  • Nho, In Sik;Ki, Min-Seok;Kim, Sung-Chan;Lee, Jang Hyun;Kim, Yonghwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.357-363
    • /
    • 2017
  • The sloshing pressure acting on a membrane-type LNG CCS is a typical irregular impact load, and the structural response of a tank system induced by sloshing also shows very complex behavior, including fluid structure interaction. Therefore, it is not easy to accurately estimate the sloshing impact pressures and resulting structural response. Moreover, a huge time consuming process to deal with the enormous pressure data obtained during a model tank test and the following structural analysis would be inevitable. To reduce the computation time for structural analysis, in this study, a rational structural modeling strategy was considered, and a simplified scheme to analyze the dynamic structural responses of an LNG CCS was introduced, which was based on the concept of the linear combination of the triangular response functions obtained by a transient response analysis of structures under unit triangular impact pressure. A structural analysis of a real Mark III membrane type insulation system under the sloshing impact pressure time histories obtained by model tests was performed using the various proposed structural models and simplified analysis scheme. The results were investigated in detail, including the elastic support effects of the hull structure.

A Study on the Sloshing of Cargo Tanks Including Hydroelastic Effects (유탄성을 고려한 탱크내 슬로싱에 대한 연구)

  • Dong-Yeon Lee;Hang-Shoon Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.27-37
    • /
    • 1998
  • The sloshing is very important in a safe transport of the liquid cargo by a ship. With the increasing number of supertanker and LNG carriers, this problem has become increasingly more important. In order to study the magnitude and characteristics of impact pressures due to sloshing, experiments ware performed with a rectangular tank and compared with numerical results. Structural responses of tank wall under impulsive pressures were measured. Structural vibrations induced by the sloshing load were analysed by including hydroelastic erects in terms of added mass and damping. To check the validity of the numerical model, the natural frequencies of plate in air and water were compared with measurements, and a good agreement was found. In the case that a plate vibrates under impulsive loads, the pressure on the flexible plate is larger than that on the rigid plate without hydroelastic effects, which was confirmed experimentally. The frequency of oscillatory pressure as well as accel%pion coincides with the natural frequency of plate in water.

  • PDF

Motion and Sloshing Analysis for New Concept of Offshore Storage Unit

  • Ha, Mun-Keun;Kim, Mun-Sung;Paik, Bu-Keun;Park, Chung-Hum
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • 본 논문에서는 선체 하부에 moonpool과 bilge step을 장착한 새로운 개념으의 LNG-FPSO를 운동감소와 cargo, operation tank의 슬로싱 현상의 관점에서 기술하였다. LNG-FPSO의 주요제원은$L\times B\times D\times t(design)=270.0\times51.0\times32.32\times13.7(m)$ 이고 적용조건은 total corgo capacity of 161KT at 98% loading condition 이다. LNG-FPSO의 운동감소의 목적으로 2개의 moonpool과 선체하부 bilge 부분에 사각 step을 장착하였다. LNG-FPSO의 운동해석을 위해 단순화된 경계조건을 만족하는 선형화된 3차원 diffraction theory를 사용하였고 LNG-FPSO의 연성된 6-자유도 운동응답을 계산하였다. LNG-FPSO의 정확한 Roll 운동을 추정하기 위해 점성효과는 Himeno(1981)가 제안한 경험식을 사용하였다. Moonpool의 크기에 따른 운동감소의 경향을 파악하기 위해 이론적 계산과 실험적 방법으로 수행하였다. Moonpool 크기와 bilge step의 효과를 최적화하기 위해 총9가지의 case를 설정하였다. 이론 및 실험 결과로부터 본 LNG-FPSO는 moonpool과 bilge step의 장착으로 인한 감쇠력의 증가로 운동성능이 우수하다. 본 LNG-FPSO의 운동 응답중, 특별히 roll 운동이 다른 drillship, shuttle tanker등의 선박과 비교하여 상당히 작았고 이는 moonpool과 blige step의 장착으로 인한 효과로 판단된다. Cargo tank와 operation tank 크기를 검토 하기 위해 불규칙 해상중 sloshing 해석을 chamfer를 갖는 LNG-FPSO의 No.2, No.5 tank 벽면의 압력 분포와 자유표면의 time history에 초점을 맞추어 수행하였다. 최종적으로 tank 크기를 최적화 하였고 최적화된 tank는 선수사파와 횡파상태의 모든 filling에서 공진현상과 충격압력이 발생하지 않음을 확인하였다.