• Title/Summary/Keyword: 슬로싱 고유진동수

Search Result 8, Processing Time 0.022 seconds

Design of Tank Velocity Based on Multi-Mode Natural Frequencies for Suppression of Sloshing (다모드 고유 진동수를 고려한 슬로싱 억제용 용기 속도의 설계)

  • Sim, Taegwon;Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.5
    • /
    • pp.311-320
    • /
    • 2017
  • Suppression of sloshing is essential to achieve fast transportation and stable maneuvering of tanks partially filled with liquid. In this study, numerical simulations are performed to investigate the effects of the acceleration magnitude and the acceleration duration of triangular velocity profiles on sloshing when a rectangular tank moves horizontally. We previously reported, based on only the first natural mode, that sloshing is significantly suppressed when the acceleration duration equals the first natural period of sloshing. On the other hand, the present CFD simulations find the best acceleration duration for minimum sloshing and explains the results considering higher modes as well as the first mode. We also perform the analysis using an equivalent model based on masses and springs, and evaluate its accuracy by comparing it with the CFD simulation results.

Finite Element Analysis of Sloshing Eigen Behavior in Horizontal Baffled Fuel Tank (수평으로 놓인 배플형 연료탱크의 슬로싱 고유거동에 관한 유한요소 해석)

  • 조진래;하세윤;이홍우;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.619-628
    • /
    • 2002
  • This paper deals with the FE analysis for the free vibration of sloshing in horizontal cylindrical tank with baffles. We use Laplace equation based on potential theory as governing equation. This problem is solved by FEM using lineal isoparametric elements. We assume that the tank as well as baffles is rigid body and by separating nodes into two at the baffle location, baffle effect is obtained by separating nodes into two at the baffle location. For the calculation of natural frequencies and mode shapes, we introduce Lanczos transformation and Jacobi iteration methods. Numerical results of the first longitudinal and transverse modes, while comparing with literature cited, are very good. In order for the baffle effects on the free vibration of sloshing, various combinations of baffle parameters, which are location, inner diameter and number, are examined.

Study on Sloshing Behaviors in Liquid Storage Tank with Rectangular Cross Section (사각단면 액체저장탱크에서의 슬로싱 거동 연구)

  • 윤성호;이은동;박기진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1087-1090
    • /
    • 2003
  • In this study, experimental procedures were suggested to investigate the sloshing behavior of a liquid storage tank subjected to inevitably external vibrating conditions. For this purpose. liquid storage tank with rectangular cross section was made of an acrylic resin for the visualization of liquid fluctuation. A specially designed vibrator was used to provide a specified vibrating condition to the liquid storage tank. Extrapolation technique was applied to determine sloshing natural frequency by using various sloshing frequencies at each vibrating displacement and liquid contents at a fixed vibrating frequency. Sloshing mode was also determined from continuous images or liquid fluctuation captured from a video camera. In addition, change in the height of the liquid free surface was measured by using a floating target and a laser displacement sensor. It is found that the suggested method can be applicable to identify the sloshing behavior of liquid storage tank with rectangular cross section.

  • PDF

Numerical Study on Effects of Velocity Profile of Liquid Container on Sloshing (액체 용기의 속도 프로파일이 슬로싱에 미치는 영향 해석)

  • Kim, Dongjoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.313-319
    • /
    • 2016
  • It is very important to understand and control the sloshing in a liquid container that is partially filled with liquid. Previous studies focused primarily on the sloshing and resonance caused by sinusoidal excitations, while the present study focuses on understanding and suppressing sloshing in a container that moves rapidly from a given point to another in industrial applications. To achieve this, we first numerically predict the two-phase flow induced by the horizontal movement of a rectangular container. Then we analyze the effects of container-velocity profile (in particular acceleration/deceleration duration) on sloshing. Results show that sloshing is significantly suppressed when the acceleration/deceleration duration is a multiple of the 1st-mode natural period of sloshing.

Evaluation for Sloshing Behaviors of Liquid Storage Tank (액체연료탱크의 슬로싱 거동 평가기법)

  • 윤성호;박기진;심국상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.314-317
    • /
    • 2002
  • The sloshing phenomenon sometimes happens to be occurred in the liquid storage tank due to the unexpected and/or inevitable vibrating conditions and may result in severe effects on the structural stability. This study deals with the development of experimental techniques for the evaluation of sloshing behavior in the liquid storage tank and for the identification of natural frequencies and mode shapes by varying with various vibrating conditions. In addition, suitable method is suggested to minimize the sloshing effect on the liquid storage tank and its validity is experimentally investigate d.

  • PDF

Dynamic Suppression Effects of Liquid Container to the Baffle Number and Hole Diameter (배플개수 및 내경변화에 따른 액체 저장탱크의 동억제 효과)

  • 조진래;김민정;이상영;허진욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.147-154
    • /
    • 2002
  • The dynamic load caused by sloshing of internal fluid severely affects the structural and control stabilities of cylindrical liquid containers accelerating vertically. If the sloshing frequency of fluid is near the frequency of control system or the tank structure, large dynamic force and moment act on launching vehicles. For the suppression of such dynamic effects, generally flexible ring-type baffles are employed. In this paper, we perform the numerical analysis to evaluate the dynamic suppression effects of baffle. The parametric analysis is performed with respect to the baffle inner-hole diameter and two different baffle spacing types : equal spacing with respect to the tank and one with respect to the fluid height. The ALE (arbitrary Lagrangin-Eulerian) numerical method is adopted for the accurate and effective simulation of the hydrodynamic interaction between fluid and elastic structure.

Seismic Analysis of Nuclear Power Equipment Related to Design (원전기자재 설계와 관련된 내진해석)

  • Lee, Woo-Hyung;Cho, Jong-Rae;Roh, Min-Sik;Ryu, Jeong-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.317-323
    • /
    • 2011
  • We use the finite element method to analyze the seismic design of a liquid storage tank for a polar crane at a nuclear power plant. We obtained the natural frequency and vibration modes by modal analysis, and we evaluated the seismic stability by response spectrum analysis. Furthermore, the seismic analysis of the tank was accomplished by analyzing not only the forces applied to the wall by the sloshing of the liquid, but also the safe-shutdown earthquake condition for the tank. We propose a seismic-design process and a seismic-analysis method for liquid storage tanks based on the commercial finite element analysis program, ANSYS.

Measurement System of Dynamic Liquid Motion using a Laser Doppler Vibrometer and Galvanometer Scanner (액체거동의 비접촉 다점측정을 위한 레이저진동계와 갈바노미터스캐너 계측시스템)

  • Kim, Junhee;Shin, Yoon-Soo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • Researches regarding measurement and control of the dynamic behavior of liquid such as sloshing have been actively on undertaken in various engineering fields. Liquid vibration is being measured in the study of tuned liquid dampers(TLDs), which attenuates wind motion of buildings even in building structures. To overcome the limitations of existing wave height measurement sensors, a method of measuring liquid vibration in a TLD using a laser Doppler vibrometer(LDV) and galvanometer scanner is proposed in this paper: the principle of measuring speed and displacement is discussed; a system of multi-point measurement with a single point of LDV according to the operating principles of the galvanometer scanner is established. 4-point liquid vibration on the TLD is measured, and the time domain data of each point is compared with the conventional video sensing data. It was confirmed that the waveform is transformed into the traveling wave and the standing wave. In addition, the data with measurement delay are cross-correlated to perform singular value decomposition. The natural frequencies and mode shapes are compared using theoretical and video sensing results.