• Title/Summary/Keyword: 슬러지 처리

Search Result 912, Processing Time 0.02 seconds

Effects of Antimicrobials on Methane Production in an Anaerobic Digestion Process (혐기소화공정에서 항생항균물질이 메탄생성에 미치는 영향)

  • Oh, Seung-Yong;Park, Noh-Back;Park, Woo-Kyun;Chun, Man-Young;Kwon, Soon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.295-303
    • /
    • 2011
  • BACKGROUND: Anaerobic digestion process is recently adapted technology for treatment of organic waste such as animal manure because the energy embedded in the waste can be recovered from the waste while the organic waste were digested. Ever increased demand for consumption of meat resulted in the excessive use of antimicrobials to the livestocks for more food production. Most antimicrobials administered to animals are excreted through urine and feces, which might highly affect the biological treatment processes of the animal manure. The aim of this study was to investigate the effects of antimicrobials on the efficiency of anaerobic digestion process and to clarify the interactions between antimicrobials and anaerobes. METHODS AND RESULTS: The experiment was consisted of two parts 1) batch test to investigate the effects of individual antibiotic compounds on production of methane and VFAs(volatile fatty acids), and removal efficiency of organic matter, and 2) the continuous reactor test to elucidate the effects of mixed antimicrobials on the whole anaerobic digestion process. The batch test showed no inhibitions in the rate of methane and VFAs production, and the rate of organic removal were observed with treatment at 1~10 mg/L of antimicrobials while temporary inhibition was observed at 50 mg/L treatment. In contrast, treatment of 100 mg/L antimicrobials resulted in continuous decreased in the rate of methane production and organic removal efficiency. The continuous reactor test conduced to see the influence of the mixed antimicrobials showed only small declines in the methane production and organic matter removal when 1~10 mg/L of combined antimicrobials were applied but this was not significant. In contrast, with the treatment of 50 mg/L of combined antimicrobials, the rate of organic removal efficiency in effluent decreased by 2~15% and the rate of biogas production decreased by 30%. CONCLUSION(s): The antimicrobials remained in the animal manure might not be removed during the anaerobic digestion process and hence, is likely to be released to the natural ecosystem. Therefore, the efforts to decline the usage of antimicrobials for animal farming would be highly recommended.

Evaluation Methods for the Removal Efficiency of Physical Algal Removal Devices (물리적 녹조 제거 장치의 제거 효율 평가 방안)

  • Pyeol-Nim Park;Kyung-Mi Kim;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In response to the periodic occurrence of cyanobacterial blooms in Korean freshwaters, various types of cyanobacteria removal technologies are being developed and implemented. Due to the differing principles behind these technologies, it is difficult to compare and evaluate their removal efficiencies. In this study, a standardized method for evaluating cyanobacteria removal efficiency was proposed by utilizing the results of removal operations using a mobile cyanobacteria removal device in the Seohwacheon area of Daechung Reservoir. During removal operations, the decrease in chlorophyll-a (chl-a) concentration (ΔChl-a) in the working area was calculated based on the amount of collected sludge, the efficiency rate, and the concentration of chl-a. Additionally, the required working days (WD) to reduce the chl-a concentration to 1 mg/m3 in the target area was calculated based on the area of the target zone, the maximum daily working area, and the efficiency rate. A method for calculating the cyanobacteria removal capacity was proposed based on the reduction rate of chl-a concentration in the water before and after the operation, the treatment capacity of the removal technology, and the water volume of the target area. The cyanobacteria removal capacity of the mobile cyanobacteria removal device used in this study was 6.64%/day (targeting the Seohwacheon area of Daechung Reservoir, approximately 500,000 m2), which was higher compared to other physical or physicochemical cyanobacteria removal technologies (0.02~4.72%/day). Utilizing the evaluation method of cyanobacteria removal efficiency presented in this study, it will be possible to compare and evaluate the cyanobacteria removal technologies currently being applied in Korea. This method could also be used to assess the performance and efficiency of physical or physicochemical combined cyanobacteria removal techniques in the "Guidelines for the Installation and Operation of Algae Removal Facilities and the Use of Algae Removal Agents" operated by the National Institute of Environmental Research.