• Title/Summary/Keyword: 슬러그시험

Search Result 6, Processing Time 0.017 seconds

A Study on the Applicability of the Hydraulic Test Method Performed at an underground Research Facility in Crystalline Rock (결정질 암반내 지하연구시설에서 수행한 현장수리시험법 적용성 연구)

  • Park, Kyung-Woo;Ko, Nak-Yeol;Ji, Sung-Hoon
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.121-131
    • /
    • 2020
  • In this paper, the transmissivities obtained from the pulse test, the slug test and the constant head test were compared each other to assess an applicability and a reliability of the hydrogeological test method, which are commonly used to derive the hydrogeological properties of a crystalline rock at un underground research facility. When comparing the results of the pulse test and the slug test, the transmissivities were very similar in the entire test section of the medium. However, there was a little discrepancy in the results in the areas where the permeability is relatively high. The results of the constant head test on the same section showed the lower transmissivity than the results of the pulse test and the slug test on the highly permeable section. This difference in permeability was considered to be due to the difference in the radius of the hydraulic effect applied in each hydraulic test. When the heterogenetic distribution of fracture affects the hydrogeological properties on crystalline rock, it is believed that the hydrogeological characteristics can be explained through a constant head test or a constant flow rate test with a large hydraulic effective radius, as well as a pulse and a slug test that can identify hydrogeological properties in a relatively short time.

Applicability of Pulse Tests to Estimate Transmissivity in Crystalline Rock (결정질 암반의 투수량계수 도출을 위한 펄스시험의 적용성 연구)

  • Park, Kyung-Woo;Park, Byeong-Hak;Ko, Nak-Youl;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.223-235
    • /
    • 2020
  • In this study, pulse tests were undertaken at an underground research facility, as part of in-situ hydraulic tests, to derive the hydrogeological characteristics of crystalline rock. The applicability of pulse tests for estimating the transmissivity of a fractured rock mass was evaluated by comparing the results to those from a slug test. Results from the pulse and slug tests were very similar for the test section, with both tests indicating low transmissivity. A slight difference between the results of pulse and slug tests, however, was observed in the section with the transmissivity larger than 1 × 10-8 ㎡/s, which is likely due to the difference in the radii of influence of the tests. Furthermore, when the pulse test was conducted in permeable zones where transmissivity was larger than 1 × 10-7 ㎡/s, it was difficult to produce accurate results. This lack of accuracy was due to the rapid recovery of the hydraulic head in these permeable test zones. When performing pulse tests, it was important to accurately measure the pressure when valves were opened and closed in order to apply the head change in the test section. Although it is difficult to derive the hydrogeological characteristics from pulse tests in areas with high permeability, these tests can be used as an economical test method for identifying hydrogeological characteristics in a relatively short time, especially when deriving the transmissivity of rocks with low permeability.

Hydraulic Characteristics of Shallow Geology in Dongrae Area, Busan Megacity (부산광역시 동래지역 천부지질의 수리적 특성)

  • Ryu, Sang-Hun;Hamm, Se-Yeong;Jeong, Jae-Hyeong;Han, Suk-Jong;Cheong, Jae-Yeol;Jang, Seong;Kim, Hyoung-Su
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.55-68
    • /
    • 2008
  • At present underground structures such as road tunnels, railway tunnels, underground petroleum storages and radioactive waste storages are being constructed in numerous places in Korea. For the construction of underground structrues, it should be accounted for natural factors (geology, hydrogeology, soil, vegetation, topography and drainage patterns) and human-social factors (land use, urbanization, population, culture and transportation). Especially, hydrogeology should be regarded as an important factor for evaluating the safety of underground structures and their impact to groundwater system around the structures. This study aimed to recognize hydrogeological characteristics of shallow formations in the area from Dongrae crossway to Seo-Dong where 45 boreholes were drilled for the construction of Line-3 subway in Busan Megacity. Slug tests for unsaturated and saturated zones were conducted on 30 boreholes in the study area. From the result of the slug tests, it was identified that average zonal hydraulic conductivity in the unsaturated zone was higher than that in the saturated zone. Besides, the slug test result in the saturated zones may reflect hydraulic properties of the upper most part of the saturated zones.

Development of Designing and Performing Procedure for Well Test in Coalbed Methane(CBM) Reservoir (석탄층 메탄가스 저류층의 유정생산시험 설계 및 수행절차 수립연구)

  • Park, Jinyoung;Lee, Jeonghwan
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.279-289
    • /
    • 2013
  • The most critical factor in developing coalbed methane(CBM) reservoir is absolute permeability. Both productivity and economics of the CBM depend on the absolute permeability. The methods to estimate it are core analysis and well test. However, absolute permeability determined by core analysis cannot be a good representative of CBM reservoir. Therefore, it is generally estimated by well test. In this study, well test methods applicable of CBM reservoir were classified with their characteristics. Merits and demerits of each well tests were also analyzed. Based on those parameters, design considerations and procedures of well test were derived. After each well tests was performed, the procedure of well test interpretations to estimate reservoir properties such as absolute permeability and skin factor was presented.

Hydraulic Parameter Estimation of a Granite Area Using Slug Tests (순간충격시험에 의한 화강암지역의 수리적 매개변수 산출)

  • 함세영;김문수;성익환;이병대;김광성
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.63-79
    • /
    • 2001
  • This study is aimed for estimating hydraulic parameters using the Cooper-Bredehoeft-Papadopulos, the Hvorslev, and the Bouwer & Rice methods at nineteen test holes in Me. Geumjeong area composed of Bulguksa granites, and for characterizing hydraulic properties at the test holes with relatioll to drill core data. The relation among hydraulic Dammeters obtained by the three methods is also considered. The study area is divided into four sub-areas to consider the hydraulic characteristics. The difference of hydraulic conductivity estimates between the injection and the withdrawal slug test may be due to penncable fracture distlibutions around the test hole and/or the disturbance of fine mateIials in the fractures induced by the pressure variation due to different mechanisms of test initiation. The hydraulic conductivity estimates detennined by the Cooper-Bredehoeft-Papadopulos, the Hvorslev and the Bouwer & Rice methods ranges from 10$^{-8}$ to lO$^{-5}$m/sec, and the ranges of average values are from 10$^{-7}$ to 10$^{-6}$m/sec. Also, the transmissivity ranges from 10$^{-7}$ to 10$^{-5}$$m^2$/sec. Comparing average hydraulic conductivity by the Cooper-Bredehoeft-Papadopulos, the Hvorslev and the Bouwer & Rice methods, by the Hvorslev method has the highest values, then the Bouwer & Rice method, and the Cooper-Bredehoeft-Papadopulos method has the lowest.

  • PDF

Determination of Enthalpy in the High Temperature Test Facility (고온 시험장치에서의 엔탈피 결정)

  • Na, Jae-Jeong;Lee, Jung-Min;Kang, Kyung-Taik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.224-227
    • /
    • 2011
  • In order to determine the enthalpy profile in the high temperature transpiration cooling test facility for the air-breating engine compartments, theoretical calculation and measurement for the flow of the test section are performed. The mass averaged enthalpy value determined by the heat balance and sonic throat methods is 10 MJ/kg. The centerline enthalpy value measured using the slug type copper calorimeter is 15 MJ/kg. Typically, the ratio of centerline and mass averaged enthalpy should be varies from 1.4 to 4. This facility has lower bound of enthalpy profile. It will be effective in testing of high temperature transpiration cooling.

  • PDF