• Title/Summary/Keyword: 슬래밍 충격압력

Search Result 24, Processing Time 0.027 seconds

A Study on Slamming Impact Pressure (슬래밍 충격 압력에 대한 연구)

  • Park, Jun-Soo;Oh, Seung-Hoon;Kwon, Sun-Hong;Chung, Jang-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.67-73
    • /
    • 2009
  • This study presents the results of a slamming experiment using a pneumatic cylinder. The employment of the pneumatic cylinder showed a relatively good repeatability when the results were compared with those of other slamming devices. The experiment was done for various incident angles. An air pocket was believed to cause a reduction in the magnitude of the impact pressure with an incident angle of $0^{\circ}$ for the water entry. A high speed camera was used in an attempt to locate the time of the contact between the bottom of the specimen and the free surface. It seemed that the maximum pressure occurred before the water contacted the bottom of the specimen.

A Study on Slamming Impact Pressure by a Numerical Method based on the Cartesian-grid System (직교격자계 기반의 수치계산법을 이용한 슬래밍 충격압력의 연구)

  • Kim, Ki-Yong;Lee, Young-Gill;Ha, Yoon-Jin;Kang, Ui-Ha;Park, Jeong-Ho;Lee, Sun-Kyu;Lee, Chang-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.308-315
    • /
    • 2019
  • In this study, numerical simulations of slamming impact pressure acting on the flat plate and wedge type models using the cartesian-grid system and Modified Marker-Density Method (MMD method) were performed and the results were examined. The flat plate and wedge type models were selected as target objects, the turbulence characteristics were considered by applying the Sub-Grid Scale (SGS) turbulence model. Through this study, how the pressure acting on the target objects according to the incident angle influences the slamming impact pressure was examined and the results were compared with the flow characteristics of other experimental results. Also, the degree of slamming impact pressure is evaluated with respect to the cartesian-grid system and MMD method, which is easy to use and has a high degree of calculation for free surface.

Numerical Simulation of Slamming Phenomena for 2-D Wedges (2차원 쐐기형 구조물의 슬래밍 현상에 대한 수치 유동해석)

  • Yum, Deuk-Joon;Yoon, Bum-Sang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.477-486
    • /
    • 2008
  • Numerical analysis for slamming impact phenomena has been carried out when 2-dimensional wedge shaped structure with finite deadrise angles enter the free surface by using a commertial CFD code, FLUENT. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct scheme (or PLIC-VOF scheme) is used for the tracking of the deforming free surface. User defined function of 6 degrees of freedom motion and moving dynamic mesh option are used for the expression of the downward motion of the structure and deforming of unstructured meshes adjacent to the structure. The magnitude and the location of impact pressure and the total drag force which is the summation of pressures distributed at the bottom of the structure are analyzed. Results of the analysis show good agreement with the results of similarity solution, asymptotic solution and the solution of BEM.

Prediction of Bow Flare Impact Pressure and Its Application to Ship Structure Design - Container Ship and PCC - (선수 플레어 충격압력 추정과 구조설계에의 응용 - 콘테이너선과 자동차 운반선 -)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.29-36
    • /
    • 2003
  • In rough seas, bow-flare regions of the fine ships (container ship and PCC) are subject to high impact pressures due to the bow-flare slamming. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, a new prediction method of the bow-flare impact pressure (in terms of equivalent static pressure) acting on the fine ships' bow is presented. This method is based on the 11 fine ships' damage analysis and the mechanisms of water entry impact and breaking wave impact. Calculation results of the bow-flare impact pressure and the shell plate thickness are shown and discussed. Through the example calculations, it was found that the present method is useful for the structure design of the fine ships' bow.

A Fundamental Study for Time History Modeling of Fluid Impact Pressure (유체 충격압력 시계열의 모델링에 관한 기초 연구)

  • Nho, In-Sik;Lee, Jae-Man;Yeom, Cheol-Woong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.242-247
    • /
    • 2010
  • To consider effects of essential parameters of water impact pressure on dynamic structural responses of bow bottom structures, a parametric study for a ship bottom panel is carried out. The idealized pressure time history models were assumed by triangular and rectangular shapes in time domain. The main loading parameters are duration time and peak pressure value maintaining the same impulse value. The structural models for local bottom stiffened panels of a container ship are analysed. The natural frequency analysis and transient dynamic response analysis are performed using MSC/NASTRAN. Added mass effects of contacting water are considered and the pressure distributions are assumed to be uniform in the whole water contacting surface. The effects of loading parameters on the structural responses, especially maximum displacements, are considered. Besides the peak pressure value, effects of duration time correlated with natural frequencies are thought to be the important parameters.

Experimental Investigations on Slamming Impacts by Drop Tests (낙하실험에 의한 슬래밍 충격의 실험 연구)

  • Shin, Hyun-Kyoung;Kim, Sung-Chul;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.410-420
    • /
    • 2010
  • When ships are sailing with large motions in rough waves, the slamming phenomenon occurs and the ships suffer from impulsive pressure loadings. Recently, ships are becoming lager and faster than before and it becomes more possible that the ships experience larger impacts on their bows and sterns. Many researchers have been performing the investigations on slamming experimentally and theoretically for a long time. Most of the research reported in the open literature focused on how to accurately estimate the amplitude of the peak pressure of slamming. According to the results of a recently published work, not only the amplitude of peak pressure but also the width of the peak may play an important role in predicting the extents of damage of impacted structures. The uncertainty of impulsive pressure loadings due to slamming has been indicated by many researchers. However, probabilistic treatments of the impulsive pressure loadings are few. In this study, drop tests were conducted on wedges having dead-rise angles of $0^{\circ}$ and $10^{\circ}$. Not only the amplitude of peak pressure but also the width of peak pressure were measured. Furthermore, the variations of those values are also provided for the probabilistic approach of the slamming problem.

Damage Analysis of Bow-Flare Structure (선수 플레어 구조손상 해석)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • In rough seas, bow-flare regions of the sea-going ships are subject to high impact pressures due to the bow-flare slamming and panting. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, bow-flare damage analysis is performed for 17 ships (total number of damage/non-damage data is 782). Based on this analysis, a new design standard and method for bow-flare structure (shell plate, frame and web frame) is proposed. 80.4% of the present damage/non-damage data were well-explained by this new design standard.

Evaluation of Impact Loads Associated with Flare Slamming (플레어 슬래밍에 관련된 충격하중의 계산)

  • Troesch, Arimin W.;Kang, Chang-Gu
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.56-72
    • /
    • 1990
  • The hydrodynamic aspects of bow flare impact are discussed and the assumptions implicit in typical flare impact calculations are examined. Calculations based upon a pressure release free surface boundary condition are presented. While this simplified boundary condition eliminates the possibility of important factors such as splash-up and above-surface wetting, it has the significant advantage of being computationally simple. Both three-dimensional and two-dimensional results are compared with experiments. Errors resulting from the approximate free surface condition are examined. Also included in the two-dimensional and three-dimensional analysis are longitudinal distributions of the vertical bending moment and vertical shear force.

  • PDF

A Study on the Estimation of Hull Form Coefficient of Slamming Impact Pressure (슬래밍 충격 압력 계산을 위한 선수선저의 형상계수 추정에 관한 연구)

  • Jeong, Seok-Gwon;Hong, Bong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 1986
  • On the slamming analysis of ship design the data for the impact pressure acted on the forward bottom of a ship are needed. Furthermore impact pressure is given by the function of both the hull form coefficient and relative velocity. In this papper. a simplified method to estimate hull form coefficient by perso;,al computer (p. c.) is studied. This numerical analysis was applied to the model of the Mariner type. and then the result by the p. c. was compared with that by IBM 7090 computer. Main results obtained are as follows: 1. The result by the developed p. c. method had fairly good agreement with that by conventional large computer (IBM 7090) within 2% error. 2. This developed method' by p. c. may be applied to the initial estimation of the K-value because of the close agreement between the ship lines by the results of p. c. and that of input.

  • PDF

Variation of the structural stability for the sonar dome window in a naval vessel according to the state of the drain valve (소나돔 충, 배수 밸브의 상태에 따른 함정용 소나돔 윈도우의 구조안정도 변화)

  • Han, HyungSuk;Lee, KyungHyun;Park, SeongHo;Lim, YongSoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.844-853
    • /
    • 2014
  • Since the active sonar for a naval vessel is usually installed in a bulbous bow, GRP(Glass reinforced plastic) material with low density and high strength is used for the material of the sonar dome window in order to prohibit impact by slamming wave or foreign material in the sea. The structural safety of the sonar dome is varied according to the interior and exterior distributed pressure on the sonar dome. Therefore, the variation of the structural safety according to the pressure variation of the sonar dome window caused by the drain valve state is studied by CAE.