• Title/Summary/Keyword: 슬라이딩 모드 관측기

Search Result 131, Processing Time 0.023 seconds

Fault Tolerant Control Strategy for Four Wheel Steer-by-Wire Systems (4륜 조향을 이용한 Steer-by-Wire 시스템의 고장 허용 제어 전략)

  • Seonghun Noh;Baek-soon Kwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.13-20
    • /
    • 2023
  • This paper presents a fault tolerant control strategy for Steer-by-Wire (SbW) systems. Among many problems to be solved before commercialization of SbW systems, maintaining reliability and fault tolerance in such systems are the most pressing issues. In most previous studies, dual steering motors are used to achieve actuation redundancy. However, relatively few studies have been conducted to introduce fault tolerant control strategies using rear wheel steering system. In this work, an actuator fault in front wheel steering is compensated by active rear wheel steering. The proposed fault tolerant control algorithm consists of disturbance observer and sliding mode control. The fault tolerant control performance of the proposed approach is validated via computer simulation studies with Carsim vehicle dynamics software and MATLAB/Simulink.

Design of a DC Motor Current Controller Using a Sliding Mode Disturbance Observer and Controller (슬라이딩 모드 외란 관측기와 제어기를 이용한 DC 모터 전류 제어기 설계)

  • Kim, In Hyuk;Son, Young Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.417-423
    • /
    • 2016
  • Using a sliding mode controller and observer techniques, this paper presents a robust current controller for a DC motor in the presence of parametric uncertainties. One of the most important issues in the practical application of sliding mode schemes is the chattering phenomenon caused by switching actions. This paper presents a novel sliding mode controller that incorporates an integral control with a sliding mode disturbance observer to attenuate the chattering by reducing the controller/observer switching gains. The proposed sliding mode disturbance observer is designed to estimate a relatively slow varying signal in the equivalent lumped disturbance owing to system uncertainties. Combining the estimated uncertainty with the sliding mode control input, the proposed controller can achieve the control objective by using the relatively low gain of the controller. The proposed disturbance observer does not include the switching control input of the baseline sliding mode controller to reduce the observer switching gain. In the proposed approach, the integral sliding mode control is used to improve the steady state control performance. Comparative computer simulations are carried out to demonstrate the performance of the proposed method. Through the simulation results, the proposed controller realizes the robust performance with reduced current ripples.

Detection and Identification of CMG Faults based on the Gyro Sensor Data (자이로 센서 정보 기반 CMG 고장 진단 및 식별)

  • Lee, Jung-Hyung;Lee, Hun-Jo;Lee, Jun-Yong;Oh, Hwa-Suk;Song, Tae-Seong;Kang, Jeong-min;Song, Deok-ki;Seo, Joong-bo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-33
    • /
    • 2019
  • Control moment gyro (CMG) employed as satellite actuators, generates a large torque through the steering of its gimbals. Although each gimbal holds a high-speed rotating wheel, the wheel imbalances induces disturbance and degrades the satellite control quality. Therefore, the disturbances ought to be detected and identified as a precaution against actuator faults. Among the method used in detecting disturbances is the state observers. In this paper, we apply a continuous second order sliding mode observer to detect single disturbances/faults in CMGs. Verification of the algorithm is also done on the hardware satellite simulator where four CMGs are installed.

Design of Sliding Mode Controller Based on Adaptive Fault Diagnosis Observer for Nonlinear Continuous-Time Systems (비선형 연속 시간 시스템을 위한 적응 고장 진단 관측기 기반 슬라이딩 모드 제어기 설계)

  • Chang, Seung Jin;Choi, Yoon Ho;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.822-826
    • /
    • 2013
  • In this paper, we propose an AFDO (Adaptive Fault Diagnosis Observer) and a fault tolerant controller for a class of nonlinear continuous-time system under the nonlinear abrupt actuator faults. Together with its estimation laws, the AFDO which estimates that the actuator faults is designed by using the Lyapunov analysis. Then, based on the designed AFDO, an adaptive sliding mode controller is proposed as the fault tolerant controller. Using Lyapunov stability analysis, we also prove the uniform boundedness of the state, the output and the fault estimation errors, and the asymptotic stability of the tracking error under the nonlinear time-varying faults. Finally, we illustrate the effectiveness of the proposed diagnosis method and the control scheme thorough computer simulations.

A Study on the Injection Rate Observer of the Piezo-actuated and Solenoid-operated Injectors for CRDI Diesel Engines (직분식 커먼레일 디젤엔진의 피에조 인젝터와 솔레노이드 인젝터의 연료분사율 추정)

  • Sa, Jong-Seong;Chung, Nam-Hoon;SunWoo, Myoung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.52-59
    • /
    • 2007
  • Fuel injection system greatly affects the performance of a direct injection diesel engine. A common rail injection system was introduced to satisfy the stringent emission standards, low fuel consumption, and low noise in recent years. The performance of a common-rail fuel injection system is strongly influenced by the injector characteristics. The common rail injector has evolved in order to improve its injection performance. The piezo-actuated injector is more suitable for common rail injection system due to its fast response and is expected to replace current solenoid-operated injector. In this study, nonlinear mathematical models are proposed for the solenoid-operated and the piezo-actuated injectors for control applications. Based on these models, the injection rate, which is one of the most important factors for the injection characteristics, is estimated using sliding mode observer. The simulation results and the experimental data show that the proposed sliding mode observers can effectively estimate the injection timing and the injection rate for both common-rail injectors.

Engine Control TCS using Throttle Angle Control and Estimated Load Torque (스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS)

  • 강상민;윤마루;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.

Enhancement of the Speed Response of PMSM Sensorless Control Using A New Adaptive Sliding Mode Observer (새로운 적응 슬라이딩 모드 관측기를 이용한 PMSM 센서리스 속도 응답특성 향상)

  • Kim, Hong-Ryel;Son, Ju-Beom;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.160-167
    • /
    • 2010
  • This paper proposes an adaptive sliding mode observer (SMO), which adds the estimation function of the stator resistance to a new sliding mode observer for the robust sensorless control of permanent magnet synchronous motor (PMSM) with variable parameters. To reduce the chattering problem commonly found in the conventional sliding mode observer where the low-pass filter and additional position compensation of the rotor are used, the sigmoid function is used for the control of a switching function in this research. With the estimation of the stator resistance, the proposed observer can improve the control performance by reducing the estimation error of the motor's speed. Note that the stator resistance is varying with the ambient temperature and becomes an error source for the sensorless control of PMSM. The new sliding mode observer has better efficiency than the conventional adaptive sliding mode observer by reducing the time consuming integral calculations. The stability of the proposed adaptive sliding mode observer is verified by the Lyapunov function in determining the observer gains, and the effectiveness of the observer is demonstrated by simulations and experiments.

A Study of Adaptive Sliding Mode Observer for a Sensorless Drive System of SRM (SRM 센서리스 구동시스템을 위한 적응 슬라이딩 모드 관측기 연구)

  • Oh Ju-Hwan;Lee Jin-Woo;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.691-699
    • /
    • 2004
  • SRM(Switched Reluctance Motor) drives require the accurate position information of the rotor. These informations are generally provided by a tacho generator or digital shaft-position encoder These speed sensors lower the system reliability and require special attention to noise. This paper describes a new approach to estimating SRM speed from measured terminal voltages and currents for speed sensorless control. The described method is based on the sliding mode observer. The rotor speed and position observers are estimated by the adaptation law using the real and estimated currents. However, the conventional adaptive sliding mode observer based on the variable structure control theory has some disadvantages that the estimated values including the high-frequency chattering and the steady state error generated due to the infinite feedback gain chosen and the discontinuous control input. To reduce the chattering and steady state error, an integrator is also inserted in the sliding mode observer strategy. The described adaptive sliding mode observer decreases the vibration to the switching hyper-plane of the sliding mode by adding integrator. The described methodology incorporates the Lyapunov algorithm to drive the rotor speed and the stator resistance such that it can overcome the problem of sensitivity in the face of SRM parameter variation. Also, without any mechanical information. The rotor speed of SRM is obtained form adaptive scheme. The described method is verified through the simulation and experiment.

PMSM Sensorless Speed Control Using a High Speed Sliding Mode Observer (고속 슬라이딩모드 관측기를 이용한 PMSM 센서리스 속도제어)

  • Son, Ju-Beom;Kim, Hong-Ryel;Seo, Young-Soo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.256-263
    • /
    • 2010
  • The paper proposes a sensorless speed control strategy for a PMSM (Permanent Magnet Synchronous Motor) based on a new SMO (Sliding Mode Observer), which substitutes a signum function with a sigmoid function. To apply robust sensorless control of PMSM against parameter fluctuations and disturbance, the high speed SMO is proposed, which estimates the rotor position and angular velocity from the back EMF. The low-pass filter and additional position compensation of the rotor are used to reduce the chattering problem commonly found in sliding mode observer with signum function, which becomes possible by applying the sigmoid function with the control of a switching function. Also the proposed sliding mode observer with the sigmoid function has better efficiency than the conventional sliding mode observer since it adjusts the observer gain by variable boundary layer and estimates the stator resistance. The stability of the proposed sliding mode observer is verified by the Lyapunov second method in determining the observer gain. The validity of the proposed high speed PMSM sensorless velocity control has been demonstrated by real experiments.

A Nonlinear Speed Control of a Permanent Magnet Synchronous Motor Using a Sequential Parameter Auto-Tuning Algorithm for Servo Equipments (서보 설비를 위한 순차적 파라미터 자동 튜닝 알고리즘을 사용한 영구자석 동기전동기의 비선형 속도 제어)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.114-123
    • /
    • 2005
  • A nonlinear speed control of a PMSM using a sequential parameter auto-tuning algorithm for servo equipments is presented. The nonlinear control scheme gives an undesirable output performance under the mismatch of the system parameters and load conditions. Recently, to improve the performance, an adaptive linearization scheme, a sliding mode control and an observer-based technique have been reported. Although a good performance can be obtained, the performance is not satisfactory any more under specific conditions such as a large inertia variation, a fast speed transient or an increased sampling time. The simultaneous estimation of principal parameters giving a direct influence on speed dynamics is generally not simple. To overcome this problem, a a sequential parameter auto-tuning algorithm at start-up is proposed, where dominant parameters are estimated in a prescribed regular sequence based on the method that one parameter is estimated during each interval. The proposed scheme is implemented on a PMSM using DSP TMS320C31 and the effectiveness is verified through simulations and experiments.