• Title/Summary/Keyword: 스핀 자기 모멘트

Search Result 33, Processing Time 0.013 seconds

The Electronic Structure and Magnetism of Superlattices Consisted of Heuslerand Zinc-blende Structured Half-metals (Heusler 화합물과 Zinc-blende 구조를 가지는 반쪽금속으로 이루어진 초격자의 전자구조와 자성)

  • Cho, Lee-Hyun;Bialek, B.;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.163-167
    • /
    • 2008
  • The electronic structure and magnetism of superlattice systems consisted of Heusler compound $Co_2MnSi$ (CMS) and zinc-blende MnAs (MA) are investigated by means of the all-electron full potential linearized augmented plane wave method within the generalized gradient approximation. Four superlattice systems are considered, that is CMS(m)/MA(n), where m and n, being either 2 or 4, denote the number of alternatingly arrayed layers of the compounds in a superlattice along [001] direction. From the calculated total magnetic moments as well as the total density of states, it is found that neither of the four systems is half-metallic. It is also found that the Mn atoms are antiferromagnetically coupled in the systems of CMS2/MA2 and CMS2/MA4. The total and atom-resolved density of states of the four superlattices are compared with those of the bulk $Co_2MnSi$ and MnAs, and the influences of the change in the systems symmetry on the magnetism and half-metallicity are discussed.

Density Functional Study on Correlation between Magnetism and Crystal Structure of Fe-Al Transition Metal Compounds (Fe-Al 전이금속 화합물의 자성과 결정구조의 상관관계에 대한 밀도범함수연구)

  • Yun, Won-Seok;Kim, In-Gee
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.43-47
    • /
    • 2011
  • It is known that the Fe-Al transition metal compounds have a lot of disagreement about structural stability and magnetism. In this study, the correlation between magnetism and atomic structure of ordered $B_2$, $L1_2$, and $D0_3$ structured Fe-Al compounds has been investigated using the all-electron full-potential linearized augmented plane wave (FLAPW) method based on the generalized gradient approximation (GGA). We found that considered all the structures were calculated to be stabilized in a ferromagnetic state. The calculated spin magnetic moments of the Fe atoms for B2 and $L1_2$ structures were 0.771 and 2.373 ${\mu}_B$, respectively, and that of Fe(I) and Fe(II) in $D0_3$ structure calculated to be 2.409 ${\mu}_B$, 1.911 ${\mu}_B$, respectively. In order to investigate structural stability between $L1_2$ and $D0_3$ structures, we performed the formation enthalpy calculations. As a result, the $D0_3$ structure is found to be more favorable than $L1_2 one by energy difference 16 meV/atom, which is well consistent with the experimental observation. We understood about structural stability and magnetism for Fe-Al compounds in terms of analysis of their atomic and electronic structures.

Valence Band Photoemission Study of Co/Pd Multilayer (광전자분광법을 이용한 Co/Pd 다층박막의 전자구조연구)

  • Kang, J.-S.;Kim, S.K.;Jeong, J.I.;Hong, J.H.;Lee, Y.P.;Shin, H.J.;Olson, C.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.48-55
    • /
    • 1993
  • We report the photoemission (PES) studies for the Co/Pd multilayter. The Co 3d PES spectrum of Co/Pd exhibits two interesting features, one near the Fermi energy, $E_{F}$, and another at ~2.5 eV below $E_{F}$. The Co 3d peak near $E_{F}$ of Co/Pd is much narrower than that of the bulk Co, consistent with the enhanced Co magnetic moment in Co/Pd compared to that in the bulk Co. The Co 3d feature at ~-2.5 eV resembles the Pd valence band structures, which suggests a substantial hybridization between the Co and Pd sublayers. The Co 3d PES spectrum of Co/Pd is compared with the existing band structures, obtained using the local spin density functional calculations. A reasonable agreement is found concerning the bandwidth of the occupied part of the Co 3d band, whereas a narrow Co 3d peak near $E_{F}$ seems not to be described by the band structure calculations.

  • PDF