• Title/Summary/Keyword: 스프링 블록 모델

Search Result 3, Processing Time 0.021 seconds

Spring Connected Size-Variable Rigid Block Model for Automatic Synthesis of a Planar Linkage Mechanism (평면 링크기구 자동 설계를 위한 스프링 연결 사이즈 가변 블록 모델)

  • Kim, Bum-Suk;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.822-826
    • /
    • 2008
  • A linkage mechanism is a device to convert an input motion into a desired output motion. Traditional linkage mechanism designs are based on trial and error approaches so that size or shape changes of an original mechanism often result in improper results. In order to resolve these problems, an improved automatic mechanism synthesis method that determines the linkage type and dimensions by using an optimization method during the synthesis process has been proposed. For the synthesis, a planar linkage is modeled as a set of rigid blocks connected by zero-length translational springs with variable stiffness. In this study, the sizes of rigid blocks were also treated as design variables for more general linkage synthesis. The values of spring stiffness and the size of rigid block yielding a desired output motion at the end-effecter are found by using an optimization method.

  • PDF

An Optimization of a Walkway Block Structure for Rainwater Harvesting (빗물저장 및 활용을 위한 보도블럭구조의 최적화)

  • Cho, Taejun;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.40-47
    • /
    • 2018
  • Porous walkway blocks are constructed for the purpose already, but reserved water is easily consumed due to the bigger permeability than necessary. Furthermore, porous structure reduces the strength of blocks, which resulting cracking and settlements in walkways. In this study, we suggested a solution for given problems by determination for the location of minimum principal stress in walkway blocks against moving foot loads in order to design and verifying the determined location of minimum principal stress. An optimum design with a verification example for determined location of minimum principal stress have been presented in a two dimensional Block member on elastic foundation for pedestrian walkway for reserving water inside. The minimum value for sum of shear forces is found when ${\times}1$ is 58.58 mm(30% of total span, 200mm), while the minimum deformation is located at ${\times}2=80mm$(70% of total span, 200 mm). In a modified model, When moving boundary condition(walkway foot loads) is located at ${\times}1$(=0 mm), the location of minimum principal stresses is found at 168 mm( 84% of span, 200 mm), in which the stress concentration due to the foot load is modeled as two layers of distributed loads(reactions of foundation modeled as springs). Consequently, zero deformed reservoirs for rainwater on the neutral axis (${\times}2=167mm$) has been determined in the modified model with three dimensional FEM analysis verifications.