• Title/Summary/Keyword: 스펙트럼 방사율

Search Result 34, Processing Time 0.018 seconds

Cesium Radioisotope Measurement Method for Environmental Soil by Ammonium Molybdophosphate (환경토양에서 몰리브도인산 암모늄을 이용한 세슘 동위원소 평가방법)

  • Choe, Yeong-hun;Seo, Yang Gon
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.122-131
    • /
    • 2016
  • Caesium radioisotopes, 134Cs and 137Cs which come from the atmospheric nuclear tests and discharges from nuclear power plants, are very important to study artificial radioactivity. In this work, in order to lower the minimum detection activity (MDA) we investigated environmental radioactivity according to the Environment Measurement Laboratory procedure by 137Cs and 134Cs which is similar to chemical and environmental behaviors of 137Cs. The environmental soils in high mountain areas near nuclear power plant were collected, and an Ammonium Molybdophosphate (AMP) precipitation method, which showed high selectivity toward Cs+ ions, was applied to chemically extract and concentrate Caesium radioisotopes. Radioactivity was estimated by a gamma-ray spectrometry. In gamma energy spectrum, with an increasing of 40K radioactivity, it increased the MDA of 134Cs and 137Cs. Therefore, if the natural radionuclides were removed from the soil samples, the MDA of Caesium may be reduced, and the contents of 137Cs of in the environmental soils can effectively be estimated. In the standard soil sample of Korea Institute of Nuclear Safety, radioactivity of 40K was removed more than 84% on average, and the MDA of 134Cs was reduced 2 times. The content of 137Cs was recovered over 84%. On the other hand, in environmental soils, AMP precipitation method showed removal ratio of 40K up to 180 times, which reduced the MDA about 5 times smaller than those of Direct method. 137Cs recovery ratio showed from 54.54% to 70.06%. When considering the MDA and recovery ratio, AMP precipitation method is effective for detection of Caesium radioisotopes in low concentration.

Development of Automatic Sorting System for Black Plastics Using Laser Induced Breakdown Spectroscopy (LIBS) (LIBS를 이용한 흑색 플라스틱의 자동선별 시스템 개발)

  • Park, Eun Kyu;Jung, Bam Bit;Choi, Woo Zin;Oh, Sung Kwun
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.73-83
    • /
    • 2017
  • Used small household appliances have a wide variety of product types and component materials, and contain high percentage of black plastics. However, they are not being recycled efficiently as conventional sensors such as near-infrared ray (NIR), etc. are not able to detect black plastic by types. In the present study, an automatic sorting system was developed based on laser-induced breakdown spectroscopy (LIBS) to promote the recycling of waste plastics. The system we developed mainly consists of sample feeder, automatic position recognition system, LIBS device, separator and control unit. By applying laser pulse on the target sample, characteristic spectral data can be obtained and analyzed by using CCD detectors. The obtained data was then treated by using a classifier, which was developed based on artificial intelligent algorithm. The separation tests on waste plastics also were carried out by using a lab-scale automatic sorting system and the test results will be discussed. The classification rate of the radial basis neural network (RBFNNs) classifier developed in this study was about > 97%. The recognition rate of the black plastic by types with the automatic sorting system was more than 94.0% and the sorting efficiency was more than 80.0%. Automatic sorting system based on LIBS technology is in its infant stage and it has a high potential for utilization in and outside Korea due to its excellent economic efficiency.

Cooling Time Determination of Spent Nuclear Fuel by Detection of Activity Ratio $^{l44}Ce /^{l37}Cs$ (방사능비 $^{l44}Ce /^{l37}Cs$ 검출에 의한 사용후핵연료 냉각기간 결정)

  • Lee, Young-Gil;Eom, Sung-Ho;Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.237-247
    • /
    • 1993
  • Activity ratio of two radioactive primary fission products which had sufficiently different half-lives was expressed as functions of cooling time and irradiation histories in which average burnup, irradiation time, cycle interval time and the dominant fissile material of the spent fuel were included. The gamma-ray spectra of 36 samples from 6 spent PWR fuel assemblies irradiated in Kori unit-1 reactor were obtained by a spectrometric system equipped with a high purity germanium gamma-ray detector. Activity ratio $^{l44}$Ce $^{l37}$Cs, analyzed from each spectrum, was used for the calculation of cooling time. The results show that the radioactive fission products $^{l44}$Ce and $^{l37}$Cs are considered as useful monitors for cooling time determination because the estimated cooling time by detection of activity ratio $^{l44}$Ce $^{l37}$Cs agreed well with the operator declared cooling time within relative difference of $\pm$5 % despite the low counting rate of the gamma-ray of $^{l44}$Ce (about 10$^{-3}$ count per second). For the samples with several different irradiation histories, the determined cooling time by modeled irradiation history showed good agreement with that by known irradiation history within time difference of $\pm$0.5 year. From this result, it would be expected to be possible to estimate reliably the cooling time of spent nuclear fuel without the exact information about irradiation history. The feasibility study on identification of and/or sorting out spent nuclear fuel by applying the technique for cooling time determination was also performed and the result shows that the detection of activity ratio $^{l44}$Ce $^{l37}$Cs by gamma-ray spectrometry would be usefully applicable to certify spent nuclear fuel for the purpose of safeguards and management in a facility in which the samples dismantled or cut from spent fuel assemblies are treated, such as the post irradiation examination facility.mination facility.

  • PDF

Janggunite, a New Mineral from the Janggun Mine, Bonghwa, Korea (경북(慶北) 봉화군(奉化郡) 장군광산산(將軍鑛山産) 신종광물(新種鑛物) 장군석(將軍石)에 대(對)한 광물학적(鑛物學的) 연구(硏究))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 1975
  • Wet chemical analysis (for $MnO_2$, MnO, and $H_2O$(+)) and electron microprobe analysis (for $Fe_2O_3$ and PbO) give $MnO_2$ 74.91, MnO 11.33, $Fe_2O_3$ (total Fe) 4.19, PbO 0.03, $H_2O$ (+) 9.46, sum 99.92%. 'Available oxygen determined by oxalate titration method is allotted to $MnO_2$ from total Mn, and the remaining Mn is calculated as MnO. Traces of Ba, Ca, Mg, K, Cu, Zn, and Al were found. Li and Na were not found. The existence of (OH) is verified from the infrared absorption spectra. The analysis corresponds to the formula $Mn^{4+}{_{4.85}}(Mn^{2+}{_{0.90}}Fe^{3+}{_{0.30}})_{1.20}O_{8.09}(OH)_{5.91}$, on the basis of O=14, 'or ideally $Mn^{4+}{_{5-x}}(Mn^{2+},Fe^{3+})_{1+x}O_{8}(OH)_{6}$ ($x{\approx}0.2$). X-ray single crystal study could not be made because of the distortion of single crystals. But the x-ray powder pattern is satisfactorily indexed by an orthorhombic cell with a 9.324, b 14.05, c $7.956{\AA}$., Z=4. The indexed powder diffraction lines are 9.34(s) (100), 7.09(s) (020), 4.62(m) (200, 121), 4.17(m) (130), 3.547(s) (112), 3.212(vw) (041), 3.101(s) (300), 2.597(w) (013), 2.469(m) (331), 2.214(vw)(420), 2.098(vw) (260), 2.014 (vw) (402), 1.863(w) (500), 1.664(w) (314), 1.554(vw) (600), 1.525(m) (601), 1.405(m) (0.10.0). DTA curve shows the endothermic peaks at $250-370^{\circ}C$ and $955^{\circ}C$. The former is due to the dehydration: and oxidation forming$(Mn,\;Fe)_2O_3$(cubic, a $9.417{\AA}$), and the latter is interpreted as the formation of a hausmannite-type oxide (tetragonal, a 5.76, c $9.51{\AA}$) from $(Mn,\;Fe)_2O_3$. Infrared absorption spectral curve shows Mn-O stretching vibrations at $515cm^{-1}$ and $545cm^{-1}$, O-H bending vibration at $1025cm^{-1}$ and O-H stretching vibration at $3225cm^{-1}$. Opaque. Reflectance 13-15%. Bireflectance distinct in air and strong in oil. Reflection pleochroism changes from whitish to light grey. Between crossed nicols, color changes from yellowish brown with bluish tint to grey in air and yellowish brown to grey through bluish brown in oil. No internal reflections. Etching reactions: HCl(conc.) and $H_2SO_4+H_2O_2$-grey tarnish; $SnCl_2$(sat.)-dark color; $HNO_3$(conc.)-grey color; $H_2O_2$-tarnish with effervescence. It is black in color. Luster dull. Cleavage one direction perfect. Streak brownish black to dark brown. H. (Mohs) 2-3, very fragile. Specific gravity 3.59(obs.), 3.57(calc.). It occurs as radiating groups of flakes, flower-like aggregates, colloform bands, dendritic or arborescent masses composed of fine grains in the cementation zone of the supergene manganese oxide deposits of the Janggun mine, Bonghwa-gun, southeastern Korea. Associated minerals are calcite, nsutite, todorokite, and some undetermined manganese dioxide minerals. The name is for the mine, the first locality. The mineral and name were approved before publication by the Commission on New Minerals and Mineral Names, I.M.A.

  • PDF