• Title/Summary/Keyword: 스펙트럼 기울기

Search Result 64, Processing Time 0.019 seconds

Fabrication and Its Characteristics of Ion Energy Spectrometer for Diagnostics of Plasma (플라즈마 진단을 위한 이온에너지 분석장치의 제작 및 특성 조사)

  • Kim, Kye-Ryung;Kim, Wan;Lee, Yong-Hyun;Kang, Hee-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 1998
  • An ion energy spectrometer which has the $45^{\circ}$ parallel electrostatic deflection plate was designed and constructed for measuring ion temperature in high temperature plasma. The energy calibration and the energy resolution were studied in detail for a hydrogen ion at the $0.24{\sim}1.92\;keV$ energy using electrostatic accelerator with a duoplasmatron ion source. The voltage of the deflection plate was linearly increased for the decreased ion detector position at the constant ion energy and decreased for the increased ion energy at the fixed ion detector position. The inclination of the deflection plate voltage to the ion energy was between 0.92 and 1.61, and linearly decreased for the increased the ion detector position. The measured energy resolution, which is $4.2%\;{\sim}\;11.6%$ in this experiment region, was improved for the increased ion dector position and ion energy. The relative efficiency was increased for the decreased the ion detector position. The ion energy spectrum of the DC plasma in the multi-purpose plasma generator was measured using this equipment. The ion temperature was 203-205 eV at the discharge voltage 320 V, discharge current 1.7 A.

  • PDF

Instability of Plunging Breaking Wave Impact on Inclined Cylinder (경사진 실린더에 작용하는 플런징 쇄파 충격력의 불안정성 고찰)

  • Hong, Key-Yong;Shin, Seung-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.187-192
    • /
    • 2007
  • Impact on cylindrical surface caused by plunging breaking waves is investigated experimentally. The breaking waves are generated in a wave flume by decreasing the wave maker frequencies linearly and focusing the generated wave components at one specific location. The breaking wave packets are based on constant wave steepness spectrum. Three inclination angles of cylinder are applied to examine the effect of contact angle between cylinder and front surface of breaking waves. Also, the effect of cylinder diameter on pressure distribution and its peak value is investigated by adopting three cylinders with different diameters. The longitudinal location of cylinder is slightly moved in eight different points to find out a probable maximum value of impact pressure. The pressures and total force on cylinder surface are measured by piezo-electric pressure sensors and 3-components load cell with 30kHz sampling rate. The variation of peak impact pressures and forces is analyzed in terms of cylinder diameter, inclination angle and location. Also, the pressure distribution on cylindrical surface is examined. The cylinder location and surface position are more important parameters that govern the magnitude and shape of peak pressures, while the cylinder diameter and inclined angle are relatively insignificant. In a certain conditions, the impact phenomenon becomes very unstable which results in a large variation of measured valves in repeated runs.

  • PDF

Determination of thyroid hormones in plasma samples by high performance liquid chromatograph/diode array detector/electrospray ionization mass spectrometer (HPLC/DAD/ESI-MS를 이용한 혈장시료 중 갑상선 호르몬 분석)

  • Kwak, Sun Young;Moon, Myeong Hee;Pyo, Heesoo
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.424-433
    • /
    • 2007
  • An analytical method for the determination of thyroid hormones in plasma samples has been studied by solid-phase extraction and high-performance liquid chromatography/diode array detector (DAD)/electrospray ionization (ESI)-mass spectrometer. Seven thyroid hormones were successfully separated by gradient elution on the reverse phase Hypersil ODS column (4.6 mm I.D., 250 mm length, particle size $5{\mu}m$) with ammonium formate buffer and acetonitrile. In addition, these compounds were confirmed by UV spectra and ESI-mass Spectra. The extraction recoveries of thyroid hormones in the plasma sample (at pH 3) were in the range of 74.5-115.7 % with solid-phase extraction by C18, followed by elution with 4 mL of methanol. The calibration curves showed good linearity with the correlation coefficients ($r^2$) varying from 0.9939 to 0.9978 and the detection limits of all analytes were obtained in the range of 20-50 ng/mL (38.1-162.8 pmol/mL). As a result, thyroxine was found in the range of 50.98-112.97 ng/mL in normal plasma samples.

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF