• Title/Summary/Keyword: 스펙클 필터링

Search Result 6, Processing Time 0.022 seconds

Reduction of Speckle Noise in Images Using Homomorphic Wavelet-Based MMSE Filter with Edge Detection (에지 영역을 고려한 호모모르픽 웨이브렛 기반 MMSE 필터를 이용한 영상 신호의 스펙클 잡음 제거)

  • 박원용;장익훈;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1098-1110
    • /
    • 2003
  • In this paper, we propose a homomorphic wavelet-based MMSE filter with edge detection to restore images degraded by speckle noise. In the proposed method, a noisy image is first transformed into logarithmic domain. Each pixel in the transformed image is then classified into flat and edge regions by applying DIP operator to the image restored by homomorphic directional MMSE filter. Each pixel in flat region is restored by homomorphic wavelet-based MMSE filter. Each pixel in edge region is restored by the weighted sum of the output of homomorphic wavelet-based MMSE filtering and that of homomorphic directional MMSE filtering. The restored image in spatial domain is finally obtained by applying the exponential function to the restored image in logarithmic domain. Experimental results show that the restored images by the proposed method have ISNR improvement of 3.3-4.0 ㏈ and ${\beta}$, a measurement parameter on edge preservation, improvement of 0.0103-0.0126 and superior subjective image quality over those by conventional methods.

Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data (Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발)

  • Kim, Minhwa;Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) remote sensing data is a very useful tool for near-real-time identification of landslide affected areas that can occur over a large area due to heavy rains or typhoons. This study aims to develop an effective algorithm for automatically delineating landslide areas from the polarimetric SAR data acquired after the landslide event. To detect landslides from SAR observations, reduction of the speckle effects in the estimation of polarimetric SAR parameters and the orthorectification of geometric distortions on sloping terrain are essential processing steps. Based on the experimental analysis, it was found that the IDAN filter can provide a better estimation of the polarimetric parameters. In addition, it was appropriate to apply orthorectification process after estimating polarimetric parameters in the slant range domain. Furthermore, it was found that the polarimetric entropy is the most appropriate parameters among various polarimetric parameters. Based on those analyses, we proposed an automatic landslide detection algorithm using the histogram thresholding of the polarimetric parameters with the aid of terrain slope information. The landslide detection algorithm was applied to the ALOS-2 PALSAR-2 data which observed landslide areas in Japan triggered by Typhoon in September 2011. Experimental results showed that the landslide areas were successfully identified by using the proposed algorithm with a detection rate of about 82% and a false alarm rate of about 3%.

An Adaptive Pseudomedian Filter for the Ultrasound Medical Image Processing (진단 초음파 영상 처리를 위한 적응 Pseudomedian 필터)

  • Eo, Jin-Woo;Hur, Eun-Seok
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.271-280
    • /
    • 2003
  • This paper presents an effective method to segment objects from the ultrasound medical image which is inherently corrupted by speckle noise. In order to reduce the speckle noise morphological opening was used as preprocessing. For the preprocessed image, sample variance of neighborhood pixels is to be computed to classify where the pixel is located on the edge region or homogeneous region. Then pseudomedian filtering with different window size is taken according to the region classified, named adaptive pseudomedian filter. Various experimental results were presented to prove superiority of the proposed filter.

  • PDF

Two-Dimensional Filtering Through the Radon Transform (라돈변환을 이용한 2차원 필터링)

  • 원중선
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.17-36
    • /
    • 1998
  • The Radon transform has been widely used in various techniques of digital image processing such as the computerized topography, lineament analysis in a remotely sensed image, slant-stack processing of seismic data, and so on. Compared to the Fourier transform, the utility of two-dimensional convolutional or correlational properties of the Radon transform, however, has been underestimated. We show that the two-dimensional convolution and correlation is respectively reduced to be one-dimensional convolution and correlation with respect to ρ in the Radon space. Therefore, one can achieve a two dimensional filtering by applying a simple one-dimensional convolution in the Radon space followed by an inverse Radon transform. Tests of the approach using FIR filters are carried out specifically for enhancing the ship wake in a RADARSAT SAR image. The test results demonstrate that the two-dimensional filtering through the Radon transform effectively enhance the ship wake features as well as reducing sea speckle in the image. Although two-dimensional convolution and correlation through the Radon transform are not so much useful as those through the courier transform in views of efficiency and effectiveness, it can be utilized to improve the quality of a digitally processed output when the process should be accompanied by the Radon transform such as topography and lineament analysis of SAR image.

Detection of Water Bodies from Kompsat-5 SAR Data (Kompsat-5 SAR 자료를 이용한 수체 탐지)

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.539-550
    • /
    • 2016
  • Detection of water bodies in land surface is an essential part of disaster monitoring, such as flood, storm surge, and tsunami, and plays an important role in analyzing spatial and temporal variation of water cycle. In this study, a quantitative comparison of different thresholding-based methods for water body detection and their applicability to Kompsat-5 SAR data were presented. In addition, the effect of speckle filtering on the detection result was analyzed. Furthermore, the variations of threshold values by the proportion of the water body area in the whole image were quantitatively evaluated. In order to improve the binary classification performance, a new water body detection algorithm based on the bimodality test and the majority filtering is presented.

Comparative Analysis among Radar Image Filters for Flood Mapping (홍수매핑을 위한 레이더 영상 필터의 비교분석)

  • Kim, Daeseong;Jung, Hyung-Sup;Baek, Wonkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.43-52
    • /
    • 2016
  • Due to the characteristics of microwave signals, Radar satellite image has been used for flood detection without weather and time influence. The more methods of flood detection were developed, the more detection rate of flood area has been increased. Since flood causes a lot of damages, flooded area should be distinguished from non flooded area. Also, the detection of flood area should be accurate. Therefore, not only image resolution but also the filtering process is critical to minimize resolution degradation. Although a resolution of radar images become better as technology develops, there were a limited focused on a highly suitable filtering methods for flood detection. Thus, the purpose of this study is to find out the most appropriate filtering method for flood detection by comparing three filtering methods: Lee filter, Frost filter and NL-means filter. Therefore, to compare the filters to detect floods, each filters are applied to the radar image. Comparison was drawn among filtered images. Then, the flood map, results of filtered images are compared in that order. As a result, Frost and NL-means filter are more effective in removing the speckle noise compared to Lee filter. In case of Frost filter, resolution degradation occurred severly during removal of the noise. In case of NL-means filter, shadow effect which could be one of the main reasons that causes false detection were not eliminated comparing to other filters. Nevertheless, result of NL-means filter shows the best detection rate because the number of shadow pixels is relatively low in entire image. Kappa coefficient is scored 0.81 for NL-means filtered image and 0.55, 0.64 and 0.74 follows for non filtered image, Lee filtered image and Frost filtered image respectively. Also, in the process of NL-means filter, speckle noise could be removed without resolution degradation. Accordingly, flooded area could be distinguished effectively from other area in NL-means filtered image.