• Title/Summary/Keyword: 스팸메일 분류기

Search Result 6, Processing Time 0.022 seconds

Analysis of filtering performance of Korean and English spam-mails (한국어와 영어 스팸메일의 필터링 성능 분석)

  • Hwang Wun-Ho;Kang Sin-Jae;Kim Tae-Hee;Kim Hee-Jae;Kim Jong-Wan
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.389-396
    • /
    • 2006
  • 본 연구에서는 한국어와 영어 메일을 대상으로 2단계 스팸 메일 필터링 시스템을 구축하여 성능평가를 수행한다. 2단계 스팸 메일 필터링 시스템은 블랙리스트를 활용하는 1단계와 기계학습을 통한 지능적인 분류를 하는 2단계로 구성된다. 만약 새로 도착한 메일이 블랙리스트의 내용을 포함한다면 이 메일은 스팸 메일로 분류되고 그렇지 않은 메일은 2단계로 넘어가서 스팸 메일 여부를 판단하게 된다. 메일의 본문이 영어로 작성된 영어 스팸 메일을 일반 메일로부터 분류해내기 위해서는 우선 Stemming과 Stopping 기법을 이용하여 본문에서 정형화된 어휘정보들을 추출한다. 추출된 어휘정보들을 대상으로 속성벡터를 구축한 후 SVM 기계 학습을 시켜 SVM 분류기를 생성하여 지능적인 스팸 메일 필터링을 수행한다. 속성벡터를 구축할 때 기준이 되는 자질을 어떻게 선택하느냐에 따라 스팸 메일 필터링 시스템의 성능이 좌우된다. 따라서 SYM 기계 학습을 위한 속성벡터를 구축할 때 기준이 되는 자질을 선택하는 여러 알고리즘들을 적용하여 성능을 비교 분석한다. 그리고 한국어 스팸 메일 필터링 시스템과 비교하여 영어 스팸 메일 필터링 시스템의 전체적인 성능을 비교 분석한다.

  • PDF

A Spam Filter System based on Maximum Entropy Model Using Spamness Features and URL Features (스팸성 자질과 URL 자질을 이용한 최대엔트로피모델 기반 스팸메일 필터 시스템)

  • Gong, Mi-Gyoung;Lee, Kyung-Soon
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.213-219
    • /
    • 2006
  • 본 논문에서는 스팸메일에 나타나는 스팸성 자질과 URL 자질을 이용한 최대엔트로피모델 기반 스팸 필터 시스템을 제안한다. 스팸성 자질은 스패머들이 스팸메일에 인위적으로 넣는 강조 패턴이나 필터 시스템을 통과하기 위해 비정상적으로 변형시킨 단어들을 말한다. 스팸성 자질 외에 반복적으로 나타나는 URL과 비정상적인 Ink도 자질로 사용하였다. 메일 수신자에게 추가적인 정보 제공을 목적으로 하이퍼링크로 연결시키거나 메일에 직접 타이핑한 URL 중 필터 시스템을 피하기 위해 유효하지 알은 비정상적인 URL들이 스팸 메일을 걸러내는데 도움을 줄 수 있기 때문이다. 또한 스팸성 자질과 URL을 각각 적용한 두 분류기를 통합하였다. 분류기의 통합은 각 분류기에 이용된 자질을 독립적으로 사용할 수 있다는 장점을 가지고 있다. 실험 결과를 통해 스팸성 자질과 URL을 이용함으로써 스팸 필터 시스템의 성능을 향상시킬 수 있음을 확인할 수 있었다.

  • PDF

An Automatic Spam e-mail Filter System Using χ2 Statistics and Support Vector Machines (카이 제곱 통계량과 지지벡터기계를 이용한 자동 스팸 메일 분류기)

  • Lee, Songwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.592-595
    • /
    • 2009
  • We propose an automatic spam mail classifier for e-mail data using Support Vector Machines (SVM). We use a lexical form of a word and its part of speech (POS) tags as features. We select useful features with ${\chi}^2$ statistics and represent each feature using text frequency (TF) and inversed document frequency (IDF) values for each feature. After training SVM with the features, SVM classifies each email as spam mail or not. In experiment, we acquired 82.7% of accuracy with e-mail data collected from a web mail system.

  • PDF

Spam Filter by Using X2 Statistics and Support Vector Machines (카이제곱 통계량과 지지벡터기계를 이용한 스팸메일 필터)

  • Lee, Song-Wook
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.249-254
    • /
    • 2010
  • We propose an automatic spam filter for e-mail data using Support Vector Machines(SVM). We use a lexical form of a word and its part of speech(POS) tags as features and select features by chi square statistics. We represent each feature by TF(text frequency), TF-IDF, and binary weight for experiments. After training SVM with the selected features, SVM classifies each e-mail as spam or not. In experiment, the selected features improve the performance of our system and we acquired overall 98.9% of accuracy with TREC05-p1 spam corpus.

SPam-mail Filtering Using SVM Classifier (SVM 분류 알고리즘을 이용한 스팸메일 필터링)

  • 민도식;송무희;손기준;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.552-554
    • /
    • 2003
  • 전자우편은 기존 우편 기능을 대체하는 대표적인 정보 전달 수단으로 자리 잡고 있다. 전자매일 사용자의 증가에 따라 망은 기업들은 전자 메일을 통해 광고를 하게 되었다. 이에 따라 전자매일 사용자들은 인터넷 상에 개인 전자메일 주소가 노출됨으로 많은 스팸메일을 수신하게 되는데, 이것은 전자메일 사용자에게 많은 부담이 되고있다. 본 논문은 전자우편 문서내의 단어들을 대상으로 통계적 방법의 SVM을 이용하여 스팸메일을 필터링 하였으며, 학습 단계에서 단어 자질공간의 축소를 위해 DF값 변화에 따른 학습을 통하여 분류의 성능을 비교하였다. SVM의 성능 평가를 위해 확률적 방법의 나이브 베이지안과 벡터 모텔을 이용한 분류기와 성능을 비교함으로써 SVM 방법이 우수한 성능을 보임을 검증하였다.

  • PDF

A Tensor Space Model based Deep Neural Network for Automated Text Classification (자동문서분류를 위한 텐서공간모델 기반 심층 신경망)

  • Lim, Pu-reum;Kim, Han-joon
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.3-13
    • /
    • 2018
  • Text classification is one of the text mining technologies that classifies a given textual document into its appropriate categories and is used in various fields such as spam email detection, news classification, question answering, emotional analysis, and chat bot. In general, the text classification system utilizes machine learning algorithms, and among a number of algorithms, naïve Bayes and support vector machine, which are suitable for text data, are known to have reasonable performance. Recently, with the development of deep learning technology, several researches on applying deep neural networks such as recurrent neural networks (RNN) and convolutional neural networks (CNN) have been introduced to improve the performance of text classification system. However, the current text classification techniques have not yet reached the perfect level of text classification. This paper focuses on the fact that the text data is expressed as a vector only with the word dimensions, which impairs the semantic information inherent in the text, and proposes a neural network architecture based upon the semantic tensor space model.