• Title/Summary/Keyword: 스패닝 트리

Search Result 43, Processing Time 0.023 seconds

Dynamic Routing and Priority-based Data Transmission Schemes in Avionic Ethernet for Improving Network QoS (항공전자 이더넷의 네트워크 성능 향상을 위한 동적 라우팅 기법 및 우선순위기반 데이터 전송 기법)

  • Lee, Won Jin;Kim, Yong Min
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.4
    • /
    • pp.302-308
    • /
    • 2019
  • Aircraft data network (ADN) is a data networking for signal transmission among avionic systems in aircraft, and it mostly has been applied MIL-STD-1553B that guarantees high reliability considering its application environments. However, commercial Ethernet has been widely applied for ADN recently, and its range of applications have increased. Ethernet provides high speed of data transmission, however, it could not guarantee quality of service (QoS) so high as MIL-STD-1553B. In this paper, we propose dynamic routing and priority based data transmission schemes in order to improve the QoS of legacy Ethernet. Our propose schemes can be applied to Ethernet switch, and it is able to manage network traffic efficiently, and reduce the time for data transmission. We analyze the packet transmission time for both legacy and proposed schemes in Ethernet environments using simulation, and we show that our proposed scheme can reduce the time for data transmission compare to legacy spanning tree protocol.

Matching Algorithms using the Union and Division (결합과 분배를 이용한 정합 알고리즘)

  • 박종민;조범준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1102-1107
    • /
    • 2004
  • Fingerprint Recognition System is made up of Off-line treatment and On-line treatment; the one is registering all the information of there trieving features which are retrieved in the digitalized fingerprint getting out of the analog fingerprint through the fingerprint acquisition device and the other is the treatment making the decision whether the users are approved to be accessed to the system or not with matching them with the fingerprint features which are retrieved and database from the input fingerprint when the users are approaching the system to use. In matching between On-line and Off-line treatment, the most important thing is which features we are going to use as the standard. Therefore, we have been using “Delta” and “Core” as this standard until now, but there might have been some deficits not to exist in every person when we set them up as the standards. In order to handle the users who do not have those features, we are still using the matching method which enables us to make up of the spanning tree or the triangulation with the relations of the spanned feature. However, there are some overheads of the time on these methods and it is not sure whether they make the correct matching or not. Therefore, I would like to represent the more correct matching algorism in this paper which has not only better matching rate but also lower mismatching rate compared to the present matching algorism by selecting the line segment connecting two minutiae on the same ridge and furrow structures as the reference point.

An Accuracy Enhancement for Anchor Free Location in Wiresless Sensor Network (무선 센서 네트워크의 고정 위치에 대한 정확도 향상)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.77-87
    • /
    • 2018
  • Many researches have been focused on localization in WSNs. However, the solutions for localization in static WSN are hard to apply to the mobile WSN. The solutions for mobile WSN localization have the assumption that there are a significant number of anchor nodes in the networks. In the resource limited situation, these solutions are difficult in applying to the static and mobile mixed WSN. Without using the anchor nodes, a localization service cannot be provided in efficient, accurate and reliable way for mixed wireless sensor networks which have a combination of static nodes and mobile nodes. Also, accuracy is an important consideration for localization in the mixed wireless sensor networks. In this paper, we presented a method to satisfy the requests for the accuracy of the localization without anchor nodes in the wireless sensor networks. Hop coordinates measurements are used as an accurate method for anchor free localization. Compared to the other methods with the same data in the same category, this technique has better accuracy than other methods. Also, we applied a minimum spanning tree algorithm to satisfy the requests for the efficiency such as low communication and computational cost of the localization without anchor nodes in WSNs. The Java simulation results show the correction of the suggested approach in a qualitative way and help to understand the performance in different placements.