• Title/Summary/Keyword: 스파크방전소결

Search Result 2, Processing Time 0.016 seconds

Preparation of Porous K2Ti6O13 Whisker Preform by Spark Plasma Sintering (방전 플라즈마 소결법에 의한 다공성 육티탄산 칼륨 휘스커 프리폼의 제조)

  • Lee, Chang-Hun;Cho, Dong-Choul;Cho, Won-Seung;Lee, Chi-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1197-1202
    • /
    • 2002
  • In order to develope the porous $K_2Ti_6O_13$ whisker preform with good strength, the pore characteristics and compressive strength were investigated as a function of spark plasma sintering temperature. As a result, high porous whisker preform were successfully fabricated by sintering at 900∼950${\circ}C$ for 10 min under a pressure of 40 MPa, heating rate of 50${\circ}C$/min and on-off pulse type of 12:2. The whisker preform prepared under above optimum condition showed relatively high compressive strength of 174∼266 MPa, despite of high porosity ranging from 15% to 37%. This improvement in strength was considered to be mainly due to the spark-plasma discharges and the self-heating action between whiskers. The compressive strength of whisker preform, fabricated at sintering temperature less than 900${\circ}C$, showed 80∼100 MPa. This is low strength level less than one half times compared with whisker preform fabricated at 900∼950${\circ}C$. The whisker preform fabricated at 1000${\circ}C$ showed the highest compressive strength of 523 MPa, but resulted in low porosity of ∼5%. Based on above results, it was considered that spark plasma sintering was an effective method for developing high strength and porosity of whisker preform.

Feasibility Evaluation of Micro Hole Drilling and the Material Properties of Si3N4/hBN Ceramic with hBN Contents (hBN의 첨가량에 따른 Si3N4/hBN 세라믹의 재료특성 및 마이크로 홀가공 유용성 평가)

  • Park, Kwi-Deuk;Go, Gun-Ho;Lee, Dong-Jin;Kim, Jin-Hyeong;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2017
  • In this paper, $Si_3N_4/hBN$ ceramics with various hexagonal boron nitride (hBN) contents (0, 10, 20, or 30 wt%) were fabricated via spark plasma sintering (SPS) at $1500^{\circ}C$, 50MPa, and 10m holding time. The material properties such as the relative density, hardness, and fracture toughness were systematically evaluated according to the hBN content in the $Si_3N_4/hBN$ ceramics. The results show that relative density, hardness, and fracture toughness continuously decreased as the hBN content increased. In addition, peak-step drilling (with tool diameter $500{\mu}m$) was performed to observe the effects of hBN content in micro-hole shape and cutting force. A machined hole diameter of $510{\mu}m$ (entrance) and stable cutting force were obtained at 30 wt% hBN content. Consequently, $Si_3N_4/30wt%$ hBN ceramic is a feasible material upon which to apply semi-conductor components, and this study is very meaningful for determining correlations between material properties and machining performance.