• Title/Summary/Keyword: 스팀 트랩

Search Result 7, Processing Time 0.018 seconds

Thermal Structural Analysis of Steam Trap Bimetal Valve (스팀 트랩 바이메탈 밸브의 열 구조해석)

  • Kim, Dong Hwan;Kim, Dong Hyun;Ryu, Gyeong Joong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.799-805
    • /
    • 2012
  • In this study, structural thermal analyses for steam trap valve considering contact boundary condition have been conducted for high temperature and pressure conditions using nonlinear finite element method. Full steam trap model also including regulator and housing structures is considered in order to accurately simulate the complex valve mechanism and investigate thermal stress levels, and structural behaviors of core structural parts. It is typically shown that the present computational approach can give very useful results for design engineers so that the operating performance and structural safety of the steam trap valve can be verified in the design process.

Study on Energy Efficiency Improvement in Manufacturing Core Processes through Energy Process Innovation (에너지 프로세스 혁신을 통한 제조 핵심 공정의 에너지 효율화 방안 연구)

  • Sang-Joon Cho;Hyun-Mu Lee;Jin-Soo Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.43-48
    • /
    • 2023
  • Globally, there is a collaborative effort to achieve global carbon neutrality in response to climate change. In the case of South Korea, greenhouse gas emissions are rapidly increasing, presenting an urgent situation that requires resolution. In this context, this study developed a thermal energy collection device named a 'steam trap' and created an AI model capable of predicting future electricity usage by collecting energy usage data through steam traps. The average accuracy of electricity usage prediction with this AI model was 96.7%, demonstrating high precision. Consequently, the AI model enables the prediction and management of days with high electricity consumption and identifies which facilities contribute to elevated power usage. Future research aims to optimize energy consumption efficiency through efficient equipment operation using anomaly detection in steam traps and standardizing energy management systems, with the ultimate goal of reducing greenhouse gas emissions.

Study of Performance Properties and Steam Condensate Capacity by Orifice Diameters of Free Float Steam Trap Valve (프리 플로우트 스팀트랩 밸브의 오리피스 지름 변화에 따른 작동 원리 및 응축수 배출량에 관한 연구)

  • Choi, In-Kyou;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.31-37
    • /
    • 2016
  • In the steam system, a stream trap valve discharges a condensate and a non-condensable gas. It also prevents stream from being leaked. The free float stream trap valve is a mechanical type of stream trap. The valve is opened when a hallow ball is floated due to the density of the condensate through the condensate flows into the valve. On the other hand, when the flow of the condensate is completed, the valve is closed as the float subsides due to the weight of the structure and the stream is blocked. In addition, the bimetal lifts the hallow ball, which discharges the non-condensable gas. In this study, the performance of the properties of the free float stream trap valve, the method of support for three points, and the orifice design are researched. Moreover, the condensate discharge capacity of the free float stream trap valve is calculated from the experiment.