• Title/Summary/Keyword: 스트립레이아웃

Search Result 43, Processing Time 0.022 seconds

The Study on the Die Design & Manufacture for Shield Shell of Inverter (인버터 실드쉘의 금형설계 및 제작에 관한 연구)

  • Choi, Kye-Kwang;Kim, Sei-Hwan;Jo, Gi-Chun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.781-784
    • /
    • 2012
  • 본 논문은 하이브리드 자동차 및 전기자동차의 고주파 발생시 전자파를 차단하는 역할을 하는 인버터 실드쉘의 프로그레시브 금형의 스트립 레이아웃과 금형설계 및 제작에 관한 연구이다. 총 11공정으로 블랭크 레이아웃을 구성하였고, 3D 금형설계를 하였다. 이와 같이 제작한 금형을 2차에 의한 트라이아웃을 하여 일본에서 수입하던 단발 금형을 프로그레시브 금형으로 인버터 실드쉘을 양산하여 원가절감, 생산성 향상에 기여하였다.

  • PDF

An Automated Process Planning System for Blanking of Stator and Rotor Parts and Irregularly-Shaped Sheet Metal Products (스테이터와 로터 및 불규칙한 박판제품의 블랭킹에 관한 공정설계 시스템)

  • Park, J.C.;Kim, B.M.;Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.46-53
    • /
    • 1996
  • This paper describes some research works of computer-aided design of blanking and piercing for stator and rotor parts and irregularly shaped sheet metal by press. An approach to the system is based on knowledge based rules. The process planning system by considering a blank layout for nesting of irregularly shaped sheet metal and an improved strip layout for stator and rotor parts and irregularly shaped sheet metal is implemented. Using this system, design parameters(utilization ratio, slitting width, pitch, working order, die blank shapes) are determined and output is generated in graphic forms. Knowledges for blank layout and strip layout are extracted from the plasticity theories, handbooks, relevant references and empirical know-hows of experts in blanking companies. The implemented system provides powerful capabilities for process planning of stator and rotor parts and irregularly shaped sheet metal.

  • PDF

Study on the 3D Design of Bracket with Automatic Module (자동화 모듈을 활용한 브라켓의 3D설계에 관한 연구)

  • Choi, Kye-Kwang;Kim, Kwang-Hee;Lee, Dong-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1164-1169
    • /
    • 2009
  • In this study, the bracket for car was designed in 3D using Cimatron Die Design, one of the automatic modules. To facilitate the stamping of the product, the layout of the strip was adjusted slightly. The blank layout of the double-width, 2-line, 2-pull out inner carrier was then optimized as a single arrangement. 3D design was completed in 11 processes.

A study on the design of a strip Lay-out for trimming tool of the automobile bonnet (자동차 본네트 트림 금형 스트립 레이아웃 설계에 관한 연구)

  • 정효상;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.675-681
    • /
    • 2002
  • Parametric modeling and configuration design method are a important methods for rapid design in manufacturing. This paper proposes a relation rules which parametrically models a bonnet trimming tool based on Pro/Engineer. The concept of desogn is applied a trimming die of the bonnet outer panel. Trimming die have a many parameters. Each a parameter is related the die face and punch profile. A design system consists of a Pro/Engineer, a Pro/program.

  • PDF

A Study on Progressive Die Design by the using of Finite Element Method (유한요소법을 이용한 프로그레시브 금형 설계에 관한 연구)

  • Park, Chul-Woo;Kim, Young-Min;Kim, Chul;Kim, Young-Ho;Choi, Jae-Chan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1012-1016
    • /
    • 2002
  • This paper describes a research work of developing computer-aided design of a product with bending and piercing for progressive working. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in Auto-LISP on the Auto-CAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, strip layout, and die layout modules. The system is designed by considering several factors, such as bending sequences by fuzzy set theory, complexities of blank geometry, punch profiles, and the availability of a press equipment. Strip layout drawing generated in the strip layout module is presented in 3-D graphic forms, including bending sequences and piercing processes with punch profiles divided into for external area. The die layout module carries out die design for each process obtained from the results of the strip layout. Results obtained using the modules enable the manufacturer for progressive working of electric products to be more efficient in this field.

  • PDF

A Study for Process Planning of Progressive Working by the using of Fuzzy Set Theory (Fuzzy set 이론을 이용한 프로그레시브 가공의 공정설계에 관한 연구)

  • Kim, Y. M.;Kim, J. H.;Kim, C.;Choi, J. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.735-739
    • /
    • 2001
  • This paper describes a research work of developing computer-aided design of a product with bending and piercing for progressive working. An approach to the system for progressive working os based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theorise, experimental results and the empirical knowledge of field experts. the system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of three main modules, which are input and shape treatment, flat pattern layout and strip layout modules. Strip layout of the system is designed by using fuzzy set theory. Process planning is determinated by fuzzy value according to several rules. Strip layout drawing generated in strip layout module is presented in 3-D graphic forms, including bending sequences and piercing processes with punch profiles divided into for external area. Results obtained using the modules enable the manufacturer for progressive working of electric products to be more efficient in this field.

  • PDF

Development of an Automated Progressive Design System for Manufacturing Product with Multi Processes, Piercing, Bending, and Deep Drawing (복합공정(피어싱, 벤딩, 디프드로잉)을 갖는 제품 제조를 위한 프로그레시브 설계 자동화 시스템 개발)

  • Hwang, Beom-Cheol;Kim, Chul;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.55-64
    • /
    • 2008
  • This paper describes a research work of developing an automated progressive design system for manufacturing the product with multi processes such as piercing, bending, and deep drawing. An approach to the system for progressive working is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system consists of three main modules, which are shape treatment, strip layout, and die layout modules. Based on knowledge-based rules, the system is designed considering several factors, such as material and thickness of a product, piercing, bending and deep drawing sequence, and the complexities of the blank geometry and punch profiles. It generates the strip layout drawing for an automobile product. Die design for each process is carried out through the die layout module from the results of the strip layout module. Results obtained using the modules enable the designers for manufacturing products with multi processes to be more efficient in this field.

A Study on the Development of Computer Aided Die Design System for Lead Frame, Semiconductor (반도체 리드 프레임의 금형설계 자동화 시스템 개발에 관한 연구)

  • Choe, Jae-Chan;Kim, Byeong-Min;Kim, Cheol;Kim, Jae-Hun;Kim, Chang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.123-132
    • /
    • 1999
  • This paper describes a research work of developing computer-aided design of lead frame, semiconductor, with blanking operation which is very precise for progressive working. Approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from pasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLISP on the AutoCAD using a personal computer and in I-DEAS Drafting Programming Language on the I-DEAS Master Series Drafting with Workstation, HP9000/715(64). Transference of data between AutoCAD and I-DEAS Master Series Drafting is accomplished by DXF(drawing exchange format) and IGES(initial graphics exchange specification) methods. This system is composed of five modules, which are input and shape treatment, production feasibility check, strip-layout, data-conversion and die-layout modules. The process planning and Die design system is designed by considering several factors, such as complexities of blank geometry, punch profiles, and the availability of a press equipment and standard parts. This system provides its efficiecy for strip-layout, and die design for lead frame, semiconductor.

  • PDF

An Automated Nesting and Process Planning System of Irregularly Shaped-Sheet Metal Product With Bending and Piercing Operation for Progressive Working (굽힘 및 피어싱 공정을 갖는 불규칙형상 제품의 프로그레시브 가공을 위한 네스팅 및 공정설계 자동화 시스템)

  • Choi, Jae-Chan;Kim, Byung-Min;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.22-32
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of irregularly shaped-sheet metal product with bending and piercing operation for progressive working. An approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of five main modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, and strip-layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, and availability of press. This system is capable of unfolding a formed sheet metal part to give flat pattern and automatically account for the adjustment of bend allowances to match tooling requirements by checking dimensions and the best utilization ratio of blank-layout within bending production feasibility area which is beyond ${\pm}30^{\circ}$ degrees intersecting angle between grain flow and bending edge line and which is suitable to progressive bending operation. Also the strip-layout drawing generated by a bending and a piercing operation according to punch profiles divided into automatically for external area of irregularly shaped-sheet metal product is displayed in graphic forms.

  • PDF

An Integrated CAD System for Progressive Working of Electronic Products (전기제품의 프로그레시브 가공을 위한 통합적 CAD 시스템)

  • Kim, Jae-Hoon;Kim, Young-Min;Kim, Chul;Choi, Jae-Chan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.829-832
    • /
    • 2000
  • This paper describes a research work of developing a computer-aided design of product with bending and piercing for progressive working. An approach to the CAD system is based on the knowledge-based rules. Knowledge fur the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of three main modules, which are input and shape treatment, flat pattern layout and strip layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, bending sequence, and availability of press. Strip layout drawing automatically generated by piercing with punch profiles divided into for external area is simulated in 3-D graphic forms, including bending sequences for the product with piercing and bending. Results obtained using the modules enable the manufacturer of electronic products to be more efficient in this field.

  • PDF