• 제목/요약/키워드: 스트리밍 데이터 마이닝

검색결과 5건 처리시간 0.017초

패턴의 변화를 가지는 연속성 데이터를 위한 스트리밍 의사결정나무 (Streaming Decision Tree for Continuity Data with Changed Pattern)

  • 윤태복;심학준;이지형;최영미
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.94-100
    • /
    • 2010
  • 데이터 마이닝(Data Mining)은 환경으로부터 수집된 데이터에서 패턴을 추출하고 의미 있는 정보를 발견하기 위하여 주로 사용된다. 하지만, 기존의 방법은 데이터의 수집이 완료된 상태에서 분석하는 것을 기반으로 하고 있으며, 시간의 흐름에 따른 패턴의 변화를 반영하기 어렵다. 본 논문은 연속성(Continuity data), 대량성(Large scale) 그리고 패턴의 가변성(Changed pattern)과 같은 특성을 가지는 스트림 데이터(Stream Data)의 분석을 위한 스트리밍 의사결정 나무(Streaming Decision Tree : SDT) 방법을 소개한다. SDT는 연속적으로 발생하는 데이터를 블록으로 정의하고, 각 블록은 의사결정나무 학습 방법을 이용하여 규칙을 추출한다. 추출된 규칙은 발생 시간, 빈도 그리고 모순 등을 고려하여 결합하였다. 실험에서는 시계열 데이터를 이용하여 분석하였고, 적절한 결과를 확인하였다.

스트리밍 XML 데이터의 빈발 구조 마이닝 (Mining of Frequent Structures over Streaming XML Data)

  • 황정희
    • 정보처리학회논문지D
    • /
    • 제15D권1호
    • /
    • pp.23-30
    • /
    • 2008
  • 유비쿼터스 환경에서 상황정보 인식 분야를 연구하면서 가장 밑바탕에서 기초가 될 수 있는 것은 인터넷 기술과 XML(Extensible Markup Language)이다. 인터넷을 통한 통신에서 XML 데이터의 사용이 일반화되고 있으며 데이터의 형태는 연속적이다. 그리고 XML 스트림 데이터에 대한 질의를 처리하기 위한 방안들이 제시되고 있다. 이 논문에서는 스트림 데이터에 대한 질의처리를 효율적으로 수행하기 위한 기반연구로써 XML을 레이블의 순서화된 트리로 모델링하여 온라인 환경에서 빈발한 구조를 추출하는 마이닝 방법을 제안한다. 즉, 지속적으로 입력되는 XML 데이터의 구조를 트리로 모델링하고 각각의 트리를 하나의 트리 집합의 구조로 표현하여 현재 윈도우 시점에서 빈발한 구조를 정확하고 빠르게 추출하는 방법을 제시한다. 제시하는 방법은 XML의 질의 처리 및 색인 구성의 기초 자료로 활용될 수 있다.

시간의 흐름과 위치 변화에 따른 멀티 블록 스트림 데이터의 의미 있는 패턴 추출 방법 (The Method for Extracting Meaningful Patterns Over the Time of Multi Blocks Stream Data)

  • 조경래;김기영
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제3권10호
    • /
    • pp.377-382
    • /
    • 2014
  • 모바일 통신과 사물 인터넷(IoT) 환경에서 시간에 따른 데이터의 분석 기술은 주로 의미 있는 정보를 찾기 위해 수집 된 데이터에서 의미있는 패턴을 추출하기 위해 사용된다. 기존의 데이터 마이닝을 이용한 분석 방법은 데이터 수집이 어렵고 시간의 경과와 관련된 시계열 데이터의 변경을 반영하기 위해 완료 상태에 기초하여 해석되어야 한다. 이러한 패턴의 다양성, 대용량성, 연속성 등의 여러 가지 특성을 가진 데이터 스트림의 분석을 위한 방법으로 멀티 블록 스트리밍 데이터 분석(AM-MBSD) 방법을 제안한다. 의미 있는 데이터 추출을 위해 멀티 블록 스트리밍 데이터의 패턴을 추출하고 추출된 연속적 데이터를 여러 개의 블록으로 정의하고 제안 방법의 검증을 위해 각 데이터 블록의 데이터 패턴 생성 시간, 주파수를 수집하고 시계열 데이터를 분석, 실험하였다.

스마트팩토리를 위한 운영빅데이터 분석 플랫폼 (Operational Big Data Analytics platform for Smart Factory)

  • 배혜림;박상혁;최유림;주병준;리스카;풀샤시;푸트라;타오픽;이상화;원석래
    • 한국빅데이터학회지
    • /
    • 제1권2호
    • /
    • pp.9-19
    • /
    • 2016
  • ICT 융합에 대한 관심이 높아진 가운데 독일의 Industry 4.0을 시작으로 제조업과 ICT 융합에 대한 연구가 활발하게 진행되고 있다. 이를 통해 전통적인 제조업의 제조단가를 낮추고 극적인 품질향상을 기대할 수 있게 되었다. 최근 정부의 제조업 3.0 전략 등에 힘입어 국내에서도 제조업에 대한 고도화가 진행되고 있으며, 이러한 추세에 발맞추어 제조업 운영에서 발생하는 빅데이터에 대한 주문맞춤형 분석 플랫폼을 개발하고 이를 통해 제조 현장의 경쟁력을 높이고자 한다. 주문맞춤형 분석 플랫폼은 확장성을 고려하여 스프링 프레임워크를 기반으로 웹에서 실행되도록 설계되었으며, 제조업 현장에서 발생하는 다량의 데이터를 빠르게 처리하기 위하여 스파크와 하둡 파일 시스템을 이용한다. 실시간으로 스트리밍 된 데이터를 프로세스 마이닝 기반 알고리즘을 통해 처리하고 공장의 현황을 분석하여 제조업 현장의 문제를 파악하고 신속한 의사결정을 지원할 수 있다.

  • PDF

스냅샷을 가지는 다중 레벨 공간 DBMS를 기반으로 하는 센서 미들웨어 구조 설계 (Design of Sensor Middleware Architecture on Multi Level Spatial DBMS with Snapshot)

  • 오은석;김호석;김재홍;배해영
    • 한국공간정보시스템학회 논문지
    • /
    • 제8권1호
    • /
    • pp.1-16
    • /
    • 2006
  • 최근 들어, 사용자가 주변 환경 및 요구 정보의 변화를 의식하지 않고 작업 환경과 수행하는 일에 집중하도록 배려하는 인간 중심 컴퓨팅 환경에 대한 연구 개발이 활발히 진행되고 있다. 그러나 이러한 컴퓨팅 환경에서 미들웨어는 사용자에게 RFID센서로부터 들어오는 대량의 정보에 대한 처리 부하를 줄이기 위하여 분석이 끝난 스트림 데이터를 삭제한다. 따라서 사용자의 데이터 웨어하우징이나 데이터마이닝에 필요한 확률, 통계 정보에 대한 요청, 또는 반복적이면서 동일한 데이터에 대한 요청을 처리할 수 없다는 문제점을 가진다. 본 논문에서는 기존의 미들웨어에서 문제가 되었던 과거 스트림 데이터 재사용 문제를 해결하기 위해, 사용자가 빈번하게 요구하는 데이터들을 스냅샷을 가지는 다중 레벨 공간 DBMS에서 관리하는 센서미들웨어 구조를 설계하였다. 본 시스템은 사용자가 요구하는 데이터 마이닝이나 데이터 웨어하우징과 같은 과거 스트림 정보를 사용한 서비스 요청을 위해, 미들웨어에서 필터링된 과거 스트림 데이터를 디스크 데이터베이스에서 관리한다. 그리고 디스크 데이터베이스에 저장된 스트림 데이터 중에서 사용자에 대한 높은 재사용 빈도를 가지는 데이터들을 스냅샷의 형태로 메모리 데이터베이스에 저장하고 이를 관리한다. 또한, 본 시스템은 메모리 데이터베이스에 저장된 스냅샷 데이터의 높은 데이터 재사용성과 신속한 서비스를 유지하기 위해서 주기적인 메모리 데이터베이스 관리 정책을 수행한다. 본 논문은 기존의 미들웨어에서의 스트림 데이터에 대한 반복적인 요청, 또는 과거 스트림 데이터를 이용한 정책 결정 서비스 요청에 대한 서비스를 제공할 수 없는 문제들을 해결하였다. 그리고 메모리에 저장된 데이터에 대한 높은 데이터 재사용성을 유지함으로서 사용자에게 지속적으로 다양하고 신속한 데이터 서비스를 제공한다.

  • PDF