• Title/Summary/Keyword: 스트론튬 이온

Search Result 43, Processing Time 0.019 seconds

Simultaneous analysis method of 89Sr and 90Sr in liquid sample using automated separation system (자동핵종분리장치를 이용한 액체시료 중 89Sr, 90Sr 동시분석법 연구)

  • Kim, Heewon;Lee, Yong-Jin;Kim, Sun-Ha;Lee, Jin-Hong;Lim, Jong-Myoung;Kim, Hyuncheol
    • Analytical Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.274-284
    • /
    • 2020
  • This study described the analytical method for simultaneous determination of 89Sr and 90Sr in liquid sample using automated separation system. Radiostrontium in 0.5 kg of liquid sample was concentrated as SrCO3 to reduce the volume of sample, and purified from the sample using Sr-resin 2 mL (BV, Bed volume). The behavior of Sr and interferences such as Ba, Ca and Y were estimated with various flow rate ranging from 1 to 4 mL min-1. The detailed procedure for the purification of Sr on Sr-resin was presented. The purified radiostronitum was measured in Cerenkov mode and then measured in Scintillation mode by mixing scintillation cocktail. The measured value in both modes were used to calculate the activity of 89Sr and 90Sr. The performance tests were carried out the lab-control-sample having various activity ratio of between 89Sr and 90Sr. The recovery of Sr was ranged from 68 to 94 %. The relative bias of 89Sr activity was ranged from -5 to 20 %, and it was ranged from -10 to 10 % for 90Sr.

Geochemical Studies of $CO_2$-rich Waters in Chojeong area II. Isotope Study (초정지역 탄산수의 지화학적 연구 II. 동위원소)

  • 고용권;김천수;배대석;최현수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.171-179
    • /
    • 1999
  • The $CO_2$-rich waters in the Chojeong area are characterized by low pH (5.0~5.8), high $CO_2$pressure (about 1 atm) and high amounts of total dissolved iou (up to 989 mg/L) and chemically belong to Ca-HC $O_3$type. The oxygen. deuterium and tritium isotope data indicate that the mixing process occurred between $CO_2$-rich water and surface water and/or shallow groundwaters and also suggest that the $CO_2$-rich water has been derived from meteoric waters. According to $\delta$$^{13}$ C values (-8.6~-5.3$\textperthousand$). the $CO_2$ in the water is attributed from deep seated $CO_2$gas. The high dissolved carbon (-14.4~-6.8$\textperthousand$. $\delta$$^{13}$ C) in groundwater of the granitic terrain might be affected by $CO_2$-rich water, whereas the dissolved carbon (-17.9~-15.2$\textperthousand$. $\delta$$^{13}$ C) in groundwater of the metamorphic terrain is likely controlled by soil $CO_2$ and from the reaction with calcite in phyllite. Sulfur isotope data (+3.5~+11.3$\textperthousand$,$\delta$$^{34}$ $S_{SO4}$) also support the mixing process between $CO_2$-rich water and shallow groundwater. Strontium isotopic ratio ($^{87}$ Sr/$^{86}$ Sr) indicates that the $CO_2$-rich water (0.7138~0.7156) is not related to vein calcite (0.7184) of Buak mine or calcite (0.7281~0.7346) in phyllite. By nitrogen isotope ($\delta$$^{15}$ $N_{NO3}$) the sources of nitrogen (up to 55.0 mg/L, N $O_3$) in the $CO_2$-rich water are identified as fertilizer and animal manure. It also indicates the possibility of denitrification during the circulation of nitrogen in the Chojeong area. The possible evolution model of the $CO_2$-rich water based on the hydrochemical and environmental isotopic data was proposed in this study. The $CO_2$-rich waters from the Chojeong area were primarily derived from the reaction with granite by supply of deep seated $CO_2$. and then the $CO_2$-rich water was mixed and diluted with the local groundwater.ter.

  • PDF

Geochemical Studies of Geothermal Waters in Yusung Geotheraml Area (유성 지역 지열수의 지구화학적 특성 연구)

  • 김건영;고용권;김천수;배대석;박맹언
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.32-46
    • /
    • 2000
  • Hydrogeochemical and isotope ($\delta$$^{18}$ O, $\delta$D, $^3$H, $\delta$$^{13}$ C, $\delta$$^{34}$ S, $^{87}$ Sr/$^{86}$ Sr) studies of various kinds of waters (thermal groundwater, deep groundwater, shallow groundwater, and surface water) from the Yusung area were carried out in order to elucidate their geochemical characteristics such as distribution and behaviour of major/minor elements, geochemical evolution, reservoir temperature, and water-rock interaction of the thermal groundwater. Thermal groundwater of the Yusung area is formed by heating at depth during deep circlulation of groundwater and is evolved into Na-HCO$_3$type water by hydrolysis of silicate minerals with calcite precipitation and mixing of shallow groundwater. High NO$_3$contents of many thermal and deep groundwater samples indicate that the thermal or deep groundwaters were mixed with contaminated shallow groundwater and/or surface water. $\delta$$^{18}$ O and $\delta$D are plotted around the global meteoric water line and there are no differences between the various types of water. Tritium contents of shallow groundwater, deep groundwater and thermal groundwater are quite different, but show that the thermal groundwater was mixed with surface water and/or shallow groundwater during uprising to surface after being heated at depths. $\delta$$^{13}$ C values of all water samples are very low (average -16.3$\textperthousand$%o). Such low $\delta$$^{13}$ C values indicate that the source of carbon is organic material and all waters from the Yusung area were affected by $CO_2$ gas originated from near surface environment. $\delta$$^{34}$ S values show mixing properties of thermal groundwater and shallow groundwater. Based on $^{87}$ Sr/$^{86}$ Sr values, Ca is thought to be originated from the dissolution of plagioclase. Reservoir temperature at depth is estimated to be 100~1$25^{\circ}C$ by calculation of equilibrium method of multiphase system. Therefore, the thermal groundwaters from the Yusung area were formed by heating at depths and evolved by water-rock interaction and mixing with shallow groundwater.

  • PDF