• 제목/요약/키워드: 스트로올 수

검색결과 2건 처리시간 0.016초

수직관에서의 이상유동 특성 (Characteristics of Two-Phase Flow in Vertical Pipe)

  • 배병모;심우건
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.879-882
    • /
    • 2004
  • Two-phase flow exists in many industrial components. Characteristics of two-phase flow have been studied by many researchers; however, a further study of the two-phase is required for flow-induced vibration. Characteristics of two-phase flow were measured by force sensor at the end of a vertical pipe. The predominant frequency of fluctuation was obtained for various speeds of flow pattern. A correlation to slug frequency for horizontal flow was obtained by Heywood & Richardson (1979), while Legius et al (1997) for vertical flow. A coefficient based on the correlation is estimated and then compared to the existing ones. The existing empirical formulations for average void fraction were proposed by Wallis (1969), Zuber et al (1967) and Ishii (1970). In the present result, flow parameters, such as flow quality and real velocity, are evaluated with void fraction.

  • PDF

균일류의 회전원주 제어에 의한 유동 및 공력 제어효과에 관한 연구 (Control effects of the flow and the aerodynamic force around the downstream cylinder by a spinning upstream cylinder in uniform flow)

  • 부정숙;양종필;김창수;신영곤
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.346-359
    • /
    • 1998
  • The aerodynamic forces and wake structure of the non-rotating downstream circular cylinder, of which the uniform freestream flow is interfered with another spinning upstream cylinder having the same diameter that is located upstream in a line have been investigated experimentally. When the spin rate of the downstream cylinder defined as the ratio of tangential surface velocity of the spinning cylinder to the freestream velocity increases gradually from zero to 1.4, the change of surface pressure distribution, aerodynamic forces of the non-rotating downstream cylinder were measured in case of several distance ratios of 1.5, 3.0, and 4.5 defined as the ratio of distance between the centers of two cylinders to the diameter. The wake flow patterns behind the cylinder were also investigated in each case. From the present experiments, it has been found that the spin rate significantly influences the aerodynamic forces and near-wake flow phenomena of the downstream cylinder in such a way that the drag increases as the spin rate and distance ratio increase and the wake width increases as the distance ratio increases.