• Title/Summary/Keyword: 스트레칭 경계 조건

Search Result 3, Processing Time 0.017 seconds

Open Boundary Modeling for Fully Nonlinear Wave Simulation in a 3-D Numerical Wave Tank (3-D 수치 파수조에서 비선형파 시뮬레이션을 위한 방사경계조건의 모델링)

  • Boo, Sung-Youn
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.99-106
    • /
    • 1998
  • 3차원 파수조에서 완전 비선형파를 시뮬레이션하기 위하여 우선 랜킨 소스를 기저로한 적분방정식을 고차경계요소법을 이용하여 이산화하였다. 그리고 방사경계조건은 파흡수 비치와 포텐셜 스트레칭 기법을 이용하여 모델링하였으며, 비선형 자유표면과 경계조건식은 고차 예측 및 보정 기법을 이용하여 시간 적분하였다. 파흡수 비치는 파의 진행방향 특성에 따라 수조내에 다양하게 배치할 수 있으며 비칭서 흡수가 덜된 파는 수조의 길이 방향 끝단에서 포텐셜 스트레칭 기법에 의하여 반사없이 진행하도록 하였다. 수치실험 결과 일-에너지 보존법칙과 모멘텀-임펄스 보존 법칙이 만족됨으로써 본 수치기법의 효용성이 검증되었다.

  • PDF

Investigation into Low Velocity Impact Characteristics of the Stainless Steel Sheet with Thickness of 0.7 mm on the Stretching Condition using Three-Dimensional Finite Element Analysis (3 차원 유한요소해석을 이용한 스트레칭 조건에서의 두께 0.7mm 스테인레스 강판의 저속 충격 특성 분석)

  • Ahn, Dong-Gyu;Moon, Kyung-Je;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.8
    • /
    • pp.80-87
    • /
    • 2008
  • This paper investigated into the impact characteristics of the stainless sheet with thickness of 0.7 mm on the stretching boundary condition through three-dimensional finite element analysis. High speed tensile tests were carried out to obtain strain-stress relationships with the effects of the strain rate. The FE analysis was performed by the ABAQUS explicit code. In order to improve an accuracy of the FE analysis, the hyper-elastic model and the damping factor were introduced. Through the comparison of the results of the FE analyses and those of the impact tests, a proper FE model was obtained. The results of the FE analyses showed that the absorption rate of energy maintains almost 82.5-83.5% irrespective of the impact energy level and the diameter of the impact head. From the results of FE analyses, variations of stress, strain, dissipation energy, strain energy density, and local deformation characteristics in the stainless sheet during the collision and the rebound of the impact head were quantitatively examined. In addition, it was shown that the fracture of the specimen occurs when the plastic strain is 0.42 and the maximum value of the plastic dissipation energy of the specimen is nearly 1.83 J.

The Effect of Planar Anisotropy in Plane-Stress Bore Expanding (평면 응력 Bore Expanding 에 있어서의 평면이방성 의 영향)

  • 주진원;이중홍;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.435-441
    • /
    • 1984
  • The matrix method, as an effective FEM formulation for the analysis of rigid-plastic deformation, was applied to the bore expanding of anisotropic sheet metal. The effect of planar anisotropy on sheet metal deformation was studied for bore expanding process under the uniform radial stretching condition, and the results were compared with isotropic and normal anisotropic solutions. Experiments were carried out using a flat punch for cold-rolled sheet metal. The experimental results were compared with computations from the matrix method with the boundary conditions corresponding to actual experiment. Both in theory and experiment, it is found that the maximum thinning which results in necking occurs in the direction of the minimum R-value. The results also suggest that the matrix method is efficient for analyzing planar anisotropic sheet metal. The comparison between theory and experiment suggests that Hill's theory of planar anisotropy is somewhat exaggerated. However, the theoretical predictions are in qualitative agreement with the experimental results.