• Title/Summary/Keyword: 스트레인율

Search Result 45, Processing Time 0.035 seconds

Feature Extraction of Hangul Character Based on Chaos Theory (카오스 이론을 이용한 한글 문자 특징 추출에 관한 연구)

  • 손영우;남궁재찬;홍경순
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.315-317
    • /
    • 1999
  • 미세한 차이를 고감도 식별하는 카오스 이론의 프랙탈 차원과 스트레인즈 어트랙터를 생성하는 수정된 에농 함수를 이용하여, 한글 2,350자에 대한 시계열 데이터의 혼도도를 분석하기 위해, 각각의 문자 0트랙터를 구성한 후, 프랙탈 차원을 나타내는 Box-counting Dimension 및 Natural Measure, Information Bit, Information Dimension 등을 구하여 문자 특징을 추출하는 새로운 알고리즘을 제시하였다. 실험결과 한글 2,350자에 대하여 99.23%의 분류율을 나타내어 제안된 방법의 유효성을 보였다.

  • PDF

Young's Modulus Measurement of Terfenol-D using Strain Gauge (스트레인 게이지를 이용한 Terfenol-D의 영률 측정)

  • Shin, M.S.;Son, De-Rac;Cho, Yook
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.130-131
    • /
    • 2002
  • Terfenol-D는 상온에서 변형이 가장 큰 재료로 알려져 있고, 자기역학적 결합계수 k$_{33}$=0.75로 매우 높기 때문에 전기에너지를 역학적 에너지로 효율적으로 변환시킬 수 있다[1]. 단점으로는 압축강도는 700 ㎫로 높으나, 인장강도 30 ㎫로 매우 낮아서 재료가 brittle하여 장치 설계 시 세심한 주의가 필요하며, 재료의 상대투자율이 3~10정도로 낮기 때문에 자기폐회로를 구성하는데 어려움이 있다[2-4]. (중략)략)

  • PDF

A numerical analysis on the extinction of hydrogen-oxygen diffusion flames at high pressure (고압하에서 수소-산소 확산화염의 소염 특성에 관한 수치 해석)

  • Son, Chae-Hun;Kim, Jong-Su;Jeong, Seok-Ho;Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1174-1184
    • /
    • 1997
  • Extinction characteristics of pure hydrogen-oxygen diffusion flames, at high pressures in the neighborhood of the critical pressure of oxygen, is numerically studied by employing counterflow diffusion flame as a model flame let in turbulent flames in rocket engines. The numerical results show that extinction strain rate increases almost linearly with pressure up to 100 atm, which can be explained by comparison of the chain-branching-reaction rate with the recombination-reaction rate. Since contributions of the chain-branching reactions, two-body reactions, are found to be much greater than those of the recombination reactions, three-body reactions, extinction is controlled by two-body reactions, thereby resulting in the linearity of extinction strain rate to pressure. Therefore, it is found that the chemical kinetic behaviors don't change up to 100 atm. Consideration of the pressure fall-off reactions shows a slight increase in extinction strain rate, but does not modify its linearity to pressure. The reduced kinetic mechanisms, which were verified at low pressures, are found to be still valid at high pressures and show good qualitative agreement in prediction of extinction strain rates. Effect of real gas is negligible on chemical kinetic behaviors of the flames.

Numerical study on extinction and acoustic response of diluted hydrogen-air diffusion flames with detailed and reduced chemistry (상세 및 축소 반응 메커니즘을 이용한 희석된 수소-공기 확산화염의 소염과 음향파 응답 특성에 관한 수치해석)

  • Son, Chae-Hun;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1527-1537
    • /
    • 1997
  • Extinction characteristics and acoustic response of hydrogen-air diffusion flames at various pressures are numerically studied by employing counterflow diffusion flame as a model flamelet in turbulent flames in combustion chambers. The numerical results show that extinction strain rate increases linearly with pressure and then decreases, and increases again at high pressures. Thus, flames are classified into three pressure regimes. Such nonmonotonic behavior is caused by the change in chemical kinetic behavior as pressure rises. The investigation of acoustic-pressure response in each regime, for better understanding of combustion instability, shows different characteristics depending on pressure. At low pressures, pressure-rise causes the increase in flame temperature and chain branching/recombination reaction rates, resulting in increased heat release. Therefore, amplification in pressure oscillation is predicted. Similar phenomena are predicted at high pressures. At moderate pressures, weak amplification is predicted since flame temperature and chain branching reaction rate decreases as pressure rises. This acoustic response can be predicted properly only with detailed chemistry or proper reduced chemistry.

Similarity between a stagnant point diffusion flame and an evolving jet diffusion flame (전개확산제트화염과 정체점 확산화염과의 유사성)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.494-502
    • /
    • 1997
  • Experiments on corresponding jet flames with stagnant point diffusion flames have been carried out in initial injection periods. A compensated measurement of maximum flame temperature, which is based on the ion signal, has been employed to inspect flame responses to time-varying strain rates. The flame responses are obtained at two conditions for the slowly time-varying strain rate and the case of flame extinction, and analyzed to confirm similarity between a stagnant point diffusion flame and an evolving jet diffusion flame. Nonsteady effects are addressed via the comparison between several time scales. The time variation with low strain rates, in which illustrates the flame behavior of the upper branch far from extinction in the well-known S-curve, is confirmed to produce a quasi-steady flame response through the nonsteady experiments. The time variation with strain rates in the case of flame extinction indicates an unsteady effect of flame response. It is therefore found that the flame responses near jet tip depend on time histories of characterized strain rates in the developing process.

NOx Formation and Flame Structure in $CH_4/Air-CO_2$ Counterflow Diffusion Flames ($CH_4/Air-CO_2$ 대향류 확산화염의 NOx 생성 특성 및 화염구조)

  • Han, J.W.;Lee, S.R.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.949-955
    • /
    • 2000
  • Numerical study with detailed chemistry has been conducted to investigate the NOx formation and structure in $CH_4/Air-CO_2$ counterflow diffusion flames. The importance of radiation effect is identified and the role of $CO_2$ addition is addressed to thermal and chemical reaction effects, which can be precisely specified through the introduction of an imaginary species. Also NO separation technique is utilized to distinguish the contribution of thermal and prompt NO formation mechanisms. The results are as follows : The radiation effect is dominant at low strain rates and it is intensified by $CO_2$ addition. Thermal effect mainly contributes to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. It is noted that flame structure is changed considerably due to the addition of $CO_2$ in such a manner that the path of methane oxidation prefers to take $CH_4 {\rightarrow}CH_3{\rightarrow}C_2H_6{\rightarrow}C_2H_5$ instead of $CH_4 {\rightarrow}CH_3{\rightarrow}CH_2{\rightarrow}CH$. At low strain rate(a=10) the reduction of thermal NO is dominant with respect to reduction rate, but that of prompt NO is dominant with respect to total amount.

  • PDF

The Influence of Strain Rates on the $CH_4/C_2HCl_3/Air$ Counterflow Nonpremixed Flames ($CH_4/C_2HCl_3/Air$ 대향류 비예혼합 화염에서 스트레인율의 영향)

  • Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2000
  • Numerical simulations of counterflow non-premixed $CH_4/C_2HCl_3/Air$ flames added 8%(by volume) C2HCl3 on the fuel side are conducted at atmospheric pressure using a detailed chemical reaction mechanism in order to understand the effect of strain rates. A detailed sensitivity analysis is also performed in order to assess the relative influence of each reaction on the flame established at a strain rate of 200s-1. The structure of flames (i.e., temperature, velocity, and concentration of species) established at both a strain rate of 150s-1 and 300s-1 are investigated. As the strain rate increases, the "flame zone" is restricted to a narrower range and the position of maximum temperature is shifted to the fuel side. The concentrations of major species, H2O, CO, H2, HCl, Cl2, and Cl are decreased with increased strain rate. The reaction involving chlorine, CH4 + Cl $\rightarrow$ CH3 + HCl, instead of the reaction, CH4 + H $\rightarrow$ CH3 + H2 influences the consumption of methane. C2HCl3 + OH $\rightarrow$ CHCl2 + CHOCl and HCl + OH $\rightarrow$ H2O + Cl, are major reactions, through which OH radicals are consumed.

  • PDF

Studies on Combustion Characteristics and Reduced Kinetic Mechanisms of Natural Gas Premixed Flames (천연가스 예혼합화염의 연소특성 및 축소반응메커니즘에 관한 연구)

  • 이수룡;김홍집;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.166-177
    • /
    • 1998
  • Combustion characteristics of natural gas premixed flames is studied experimently and numerically by adopting a counterflow as a flamelet model in turbulent flames. Flame speeds are measured by employing LDV, and the results show that flame speed increases linearly with strain rate, which agrees well with numerical results. Parametric dependences of extinction strain rates are studied numerically with detailed kinetic mechanism to show that the addition of ethand to a methane premixed flame makes the flame more resistant to strain rate. The effect of pressure on the extinction strain rate is that the extinction strain rate increases up to 10 atm and them decreases, which is explained by competition of chain branching H+O2=OH+O and recombination reaction H+O2+M=HO2+M. Detailed mechanism having seventy-four step is systematically reduced to a nine-step and a five-step thermal NOx chemistry is reduced to two-step. Comparison between the results of the detailed and the reduced mechanisms demonstrates that the reduced mechanism successfully describes the essential features of natural gas premixed flames including extinction strain rate and NOx production.

  • PDF

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

The Development of a Flexible and Sensible Robot Wrist for Aseembly Process (유연하고 감지성있는 조립전용 로봇 손목 의 개발 에 대한 연구)

  • 조형석;고경철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.488-497
    • /
    • 1984
  • In the assembling process by industrial robots, many difficulties stem from the fact that the assembly operation is impossible or the parts to be assembled can be damaged by reaction forces due to even little misalignment in part mating. In this paper a flexible and sensible robot wrist is developed to make possible the precision insertion operation. The flexibility of the developed wrist were evaluated both analytically and experimentally in actual insertion process. The results show that without the use of feedback control the wrist is capable of doing insertion operations with a small clearance at a low inserting force. For smaller clearance the assembly process was devised involving insertion force feedback and a control algorithm for this active accommodation was developed. The simulation results show that if the active feedback control is used the insertion action can be performed with much less force, as compared with a passive accommodation method.