• Title/Summary/Keyword: 스트레스 단백질

Search Result 436, Processing Time 0.028 seconds

The Stability of p53 in Ras-mediated Senescent Cells in Response to Nucleolar Stress (Ras에 의해 유도된 노화세포에서 핵인 스트레스에 의한 p53 안정화 연구)

  • Sihn, Choong-Ryoul;Park, Gil-Hong;Lee, Kee-Ho;Kim, Sang-Hoon
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.436-441
    • /
    • 2009
  • B23/nucleophosmin, a nucleolar protein, translocates into the nucleus from the nucleolus when cells are damaged by extracellular stresses. Recently, it was shown that such translocation of B23/nucleophosmin in normal fibroblasts under stress conditions increases both the stability and activation of the p53 protein by disrupting its interaction with MDM2. Senescent cells have a single large nucleolus and a diminished capacity to induce p53 stability upon exposure to various DNA damaging agents. To investigate the role of B23/nucleophosmin in p53 stability in senescent cells, we established a senescence model system by expressing the ras oncogene in IMR90 cells. The stability of p53 was reduced in these cells in response to nucleolar stress, although the level of B23/nucleophosmin protein was not changed. In addition, p53 did not accumulate in the nucleus and B23/nucleophosmin did not translocate into the nucleoplasm. The binding affinity of B23/nucleophosmin with p53 was reduced in senescent cells, whereas the interaction between MDM2 and p53 was stable. Taken together, the stability of p53 in ras-induced senescent cells may be influenced by the ability of B23/nucleophosmin to interact with p53 in response to nucleolar stress.

Effects of Taurine Supplementation on Heat Shock Protein 70 and In Vitro Protein Syntheses in Liver of Broiler Chicks under Chronic Heat Stress (고온 스트레스 하에 타우린 첨가가 육계 간의 Heat Shock Protein 70 및 In Vitro의 단백질 합성에 미치는 영향)

  • Cho, Eun So Ri;Park, Garng Hee;Shim, Kwan Seob
    • Korean Journal of Poultry Science
    • /
    • v.43 no.4
    • /
    • pp.213-218
    • /
    • 2016
  • This study was conducted to investigate the effect of taurine supplementation on heat shock protein 70 and in vitro protein turnover in broiler chicks under chronic heat stress. Chicks were allocated into 3 groups of 10 birds per group; the control group was maintained at a temperature of $24^{\circ}C$ without taurine (CO group), the heat-stressed group maintained at a temperature of $34^{\circ}C$ without taurine (HO group), and heat-stressed group maintained at a temperature of $34^{\circ}C$ with taurine (HT group). The final body and liver weights of broilers in the HO and HT groups were significantly lower than those of broilers in the CO group (P<0.05). However, these parameters of the broilers in the HT group were significantly higher than those of broilers in the HO group (P<0.05). The heat shock protein 70 (hsp70) concentration in the liver of broilers in the HO group was significantly higher than that of broilers in the CO and HT groups, but the hsp70 concentration in the liver of broilers in the HT group was not different from that of broilers in the CO group. Liver homogenates of 21 day-old broilers were incubated at temperatures of $37^{\circ}C$ and $45^{\circ}C$ to prove the effect of high temperature and taurine on total protein syntheses. Neither high temperature nor taurine supplementation affected protein syntheses in liver homogenates of the broilers. However, the more the temperature increased, the more the degradation rates of cytoplasmic protein in liver homogenates increased; however, taurine supplementation had no effects on the protein syntheses in the liver of the broiler. It is possible that taurine indirectly affected protein turnover via various physiological mechanisms.

Effects of Sound Stress on Physiological Processes of the American Leafminer, Liriomyza trifolii, and Proteomic Analysis (스트레스 음파 처리에 따른 아메리카잎굴파리(Liriomyza trifolii)의 생리 변화와 프로테오믹 분석)

  • Park, Jung-A;Surakasi, Venkara Prasad;Kim, Yong-Gun
    • Korean journal of applied entomology
    • /
    • v.50 no.2
    • /
    • pp.131-139
    • /
    • 2011
  • This study investigated the adverse effects of sound treatment on physiological processes of the American leafminer, Liriomyza trifolii, during several developmental stages. Larval feeding activity was analyzed by measuring feeding tunnel length. It was significantly suppressed by sound treatment (5,000 Hz, 95 dB). Sound treatment delayed the pupal period at 315 - 5,000 Hz and prevented adult emergence at 1,000 - 5,000 Hz. Female oviposition was also inhibited by the stress sound treatments. However, phototactic adult movement was not affected by sound treatment. Pupae treated with 5,000 Hz showed marked changes in protein patterns analyzed by two dimensional electrophoresis. MALDI-TOF analysis of specific protein spots indicated that trafficking protein particle complex I, triosephosphate isomerase, hypothetical protein TcasGA2_TC013388, polycystin-2, paraneoplastic neuronal antigen MA1, and tropomyosin I (isoform M) were predicted in the control insects and disappeared in the insects treated with sound. By contrast, DOCK9, cytoskeletal keratin II, and F0F1-ATP synthase beta subunit were predicted only in the sound-treated insects. Furthermore, stress sound significantly increased the susceptibility of L. trifolii to insecticides. These results suggest that physiological processes of L. trifolii are altered by sound stress, which may be exploited to develop a novel physical control tactic against L. trifolii.

사료중 크릴 밀이 브로일러 병아리의 생산성과 단백질 및 에너지 이용성에 미치는 영향

  • 김재환;임진택;박인경;고태송
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2002.11a
    • /
    • pp.90-91
    • /
    • 2002
  • In order to study the effect of dietary krill meal on the performance and the utilization of protein and energy, broiler chicks fed on the experimental diets containing 0.0%, 0.5% and 1.0% krill meal, respectively, and injected Salmonella typhimurium lipopolysacharide(LPS) (Immunological stress) in 2nd week of age during 3 weeks of experimental period. Dietary krill meal did not affect daily gain and feed efficiency but the immunological stress lowered daily gain and feed intake and nitrogen balance and increased liver and spleen weight and the energy utilization of bird. The uric acid excretion was accelerated by immunological stress.

  • PDF

Turfgrass Responses to Water Deficit: A Review (물 부족 현상으로 인한 잔디의 생리학적 반응: 리뷰)

  • Lee, Joon-Hee
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • Drought is a major limiting factor in turfgrass management. Turfgrass responses to water deficit depend on the amount and the rate of water loss as well as the duration of the stress condition. This review paper was designed to understand responses such as photosynthesis, canopy spectral reflectance, plant cell, root, hormone and protein alteration when turfgrass got drought stress. Furthermore, mechanisms to recover from drought conditions were reviewed in detail. However, there are still many questions regarding plant adaptation to water deficit. It is not clear that the mechanism by which plants detect water deficit and transfer that signal into adaptive responses. Turfgrass research should focus on the best management practices such as how to enhance the ability of self-defense mechanism through understanding plant responses by environmental stress.

Comparison of the ${\sigma}^B$-Dependent General Stress Response between Bacillus subtilis and Listeria monocytogenes (Bacillus subtilis와 Listeria monocytogenes의 일반 스트레스반응의 비교)

  • Shin, Ji-Hyun
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.10-16
    • /
    • 2009
  • A diverse range of stresses such as heat, cold, salt, ethanol, oxygen starvation or nutrient starvation induces same stress-responsive proteins. This general stress response enhances bacterial survival significantly. In Bacillus subtilis and closely related Gram-positive bacteria Listeria monocytogenes, the general stress response is controlled by the alternative transcription factor ${\sigma}^B$. The activity of ${\sigma}^B$ is regulated post-translationally by a signal transduction network that has been extensively studied in B. subtilis, and serve as a model for L. monocytogenes. The proposed model of L. monocytogenes signal transduction network is similar to that of B. subtilis, but the energy stress pathway is missing. More than 150 general stress proteins belong to ${\sigma}^B$ regulon of B. subtilis and L. monocytogenes. In both bacteria, ${\sigma}^B$ function is primarily important for resistance to diverse stresses. In addition, ${\sigma}^B$ function contributes to the control of important virulence genes in food-borne pathogen L. monocytogenes. Therefore, understanding of the general stress response is important not only for bacterial physiology, but also for pathogenicity.

The Regulation of Stress Responses by Non-tandem CCCH Zinc Finger Genes in Plants (식물에서 non-tandem CCCH zinc finger 그룹 유전자에 의한 스트레스 반응 조절)

  • Hye-Yeon Seok;Md Bayzid;Swarnali Sarker;Sun-Young Lee;Yong-Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.956-965
    • /
    • 2023
  • In plants, there are many CCCH zinc finger proteins consisting of three cysteine residues and one histidine residue, which bind to zinc ions with finger configuration. CCCH-type zinc finger proteins are divided into tandem CCCH-type zinc finger (TZF) and non-TZF proteins: TZF proteins contain exactly two tandem CCCH-type zinc finger motifs whereas non-TZF proteins have fewer or greater than two CCCH-type zinc finger motifs. The functions of TZF genes, especially plant-specific RR-TZF genes, have been well studied in several plants, whereas the functional roles of non-TZF genes have not been adequately researched compared to TZF genes. Many non-TZF genes have been identified as being involved in the responses to biotic and abiotic stresses, such as pathogen, high salt, drought, cold, heat, and oxidative stresses. Some non-TZF proteins bind to RNA and are involved in the post-transcriptional regulation of stress-responsive genes in the cytoplasm. In addition, other non-TZF proteins act as transcriptional activators or repressors that regulate the expression of stress-responsive genes in the nucleus. Despite these studies, stress signal transduction and upstream and downstream genes of non-TZF genes have not been sufficiently researched, suggesting that additional studies of the functions of non-TZF genes' functions in plants' stress responses are needed. In this review, we describe non-TZF genes involved in biotic abiotic stress responses in plants and their molecular functions.

The Effect of Cold-adaptation on Stress Responses and Identification of a Cold Shock Gene, capA in Bradyrhizobium japonicum (Bradyrhizobium japonicum의 저온 전처리에 의한 환경스트레스 내성 증진에 대한 연구)

  • 유지철;노재상;오은택;소재성
    • Korean Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.45-49
    • /
    • 2002
  • Bradyrhizobium japonicum is a soil bacterium with a unique ability to infect the roots of leguminous plants and establish a nitrogen-fixing symbiosis, which has been used as a microbial manure. In this study, we examined the stress response after pretreatment of cells with cold temperature. When pre-treated with cold temperature ($4^{\circ}C$) for 16 hr, B. japonicum increased the viability in subsequent stress-conditions such as alcohol, $H_2O_2$, heat, and dehydration. For cold adpatation, cultured B. japonicum was exposed to $4^{\circ}C$. Upon subsequent exposure to various conditions, the number of adapted cells pretreated by cold adaptation was 10-1000 fold higher than that of non-adaptated ones. It appeared de novo protein synthesis occurred during adaptation, because a protein synthesis inhibitor, chloramphenicol abolished the increased stress tolerance. By using a degenerate PCR primer set, a csp homolog was amplified from B. japonicum genome and sequenced. The deduced partial amino acid sequence of the putative Csp (Cold shock protein) shares a significant similarity with known Csp proteins of other bacteria.

Protectins Effects of Vitamin E against Immobilization Stress-Induced Oxidative Damage in Rat Brain (스트레스로 인한 뇌조직의 산화적 손상에서 Vitamin E의 방어 효과)

  • 박미현;강상모;정혜영;홍성길
    • Journal of Nutrition and Health
    • /
    • v.36 no.6
    • /
    • pp.570-576
    • /
    • 2003
  • The remarkable change of phenomenon induced by stress increase energy metabolism that can induce many reactive oxygen species (ROS) production. ROS can peroxidize cellular macromolecules including lipid and protein. The object of this study was to investigate whether stress may induce cellular damage by producing ROS and whether vitamin E, as a strong lipid-soluble antioxidant, can protect cells against reactive oxygen species produced by noise and immobilization stress in SD rats. The stress group increased 5-hydroxyindole aceti acid (5-HIAA) , one of the stress hormone, in brain tissue and free fatty acid in plasma. Vitamin I treatment had no effect on 5-HIAA but free fatty acid contents decreased with a fortified vitamin I diet. Furthermore, the body weight of vitamin I-treated rats increased more than that of the stress group. Lipid peroxidation and protein degradation as an index of oxidative damage in brain tissue decreased with the use of the fortified vitamin I diet supplement. The results suggest that vitamin I supplements have a protective effect against noise and immobilization stress-induced oxidative damage in brain tissue.

Proteome Characterization of Sorghum (Sorghum bicolor L.) at Vegetative Stage under Waterlogging Stress (토양 과습 조건하에서 수수 잎의 단백질 양상)

  • Yun, Min Heon;Jeong, Hae-Ryong;Yoo, Jang-Hwan;Roy, Swapan Kumar;Kwon, Soo-Jeong;Kim, Joo-Ho;Chun, Hyen Chung;Jung, Ki Yuol;Cho, Seong-Woo;Woo, Sun-Hee
    • Korean Journal of Plant Resources
    • /
    • v.31 no.2
    • /
    • pp.124-135
    • /
    • 2018
  • The study was performed to explore the molecular changes in the vegetative stage (3-and 5-leaf) of sorghum under waterlogging stress. A total of 74 differentially expressed protein spots were analyzed using LTQ-FT-ICR MS. Among them, 12 proteins were up-regulated and 3 proteins were down-regulated. Mass spectrometry (MS) results showed that about 50% of the proteins involved in various metabolic processes. The level of protein expression of malate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase related to carbohydrate metabolic process increased in both 3 and 5-leaf stage under waterlogging stress. These proteins are known to function as antistress agents against waterlogging stress. The expression of oxygen-evolving enhancer protein 1 protein related to photosynthesis was slightly increased in the treated group than in the control group, however the expression level was increased in the 5-leaf stage compared to the 3-leaf stage. Probable phospholipid hydroperoxide glutathione peroxidase protein and superoxide dismutase protein related to response to oxidative stress showed the highest expression level in 5-leaf stage treatment. This suggests that the production of reactive oxygen species by the waterlogging stress was the most abundant in the 5-leaf treatment group, and the expression of the antioxidant defense protein was increased.