• Title/Summary/Keyword: 스트랜드 버너

Search Result 9, Processing Time 0.092 seconds

Analysis of Ultrasonic Attenuation for Improving Ultrasonic Burning Rates Measurement of Solid Propellants (고체추진제 초음파 연소속도 측정 정밀도 향상을 위한 초음파 감쇠 분석)

  • Oh, Hyun-Taek;Song, Sung-Jin;Kim, Hak-Joon;Ko, Sun-Feel;Kang, To;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.195-198
    • /
    • 2008
  • Ultrasonic method is applied for measuring burning rates of the solid propellants, since it can measure burning rates as a function of pressure in a single test performed. However, to replace the stand burner method by the ultrasonic method, it is necessary to verify of its accuracy and reliability. In this study, we investigated the performance of the ultrasonic method for burning rate measurements by comparison to the strand burner results. Furthermore, we investigated the relation between the attenuations of solid propellants and data scattering in the measured burning rates.

  • PDF

A Study on the Burning Characteristics of Composite Propellants at Low Pressure using Vacuum Strand Burner (Vacuum Strand Burner를 이용한 혼합형 추진제의 저압 연소특성 연구)

  • 김인철;유지창;박영규;이태호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.39-45
    • /
    • 1994
  • Combustion characteristics of the solid composite propellants were studied from burning rate, ignition and steady combustion processes, and structure of the extinguished surfaces. Optical Vacuum Strand Burner (OVSB) system was desisted and configured to study those. Burning rates of the propellants were measured by OVSB at low pressure range by developed ten method. video camera(30 frames/s) was used to take potographs of the phenomena of ignition and combustion of propellant within the test cell of the OVSB. Burning surfaces of the propellants that were extinguished by rapid depressurization method were analyzed with Scanning Electron Microscope. (SEM).

  • PDF

Analysis of measurement Accuracy up to High Pressure for Various Solid Propellants using Ultrasound (초음파를 이용한 다양한 고체추진제의 고압범위까지의 연소속도 측정 정밀도 분석)

  • Oh, Hyun-Taek;Song, Sung-Jin;Kim, Hak-Joon;Ko, Sun-Feel;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.265-268
    • /
    • 2008
  • In this study, we measured burning rates of solid propellants which has various burning rates until 5000 psia, and we evaluated measurement accuracy of ultrasonic method by analyzing error of burning rates. Also, We compared result of burning rates by using ultrasonic method with strand burner method so that characteristics of two measurements method are evaluated.

  • PDF

Burning Rate Testing of Double Base Solid Propellants using Ultrasound (초음파를 이용한 Double Base형 고체추진제의 연소속도 측정)

  • Song, Sung-Jin;Ko, Sun-Feel;Kim, Hak-Joon;Oh, Hyun-Taek;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.247-250
    • /
    • 2006
  • In the previous study, we have developed an ultrasonic measurement system and analysis technique for borning rate testing of solid propellants using ultrasound. And then, using the developed system, burning rate of composite propellants were measured. So, in this study, we performed measurement of double base solid propellant, which has non-linear homing rate as pressure increasing, using the developed system in order to evaluate capability of ultrasonic method. Furthermore, accuracy of measured homing rates using ultrasound was verified by comparison to homing rate measured by the strand burner method.

  • PDF

Burning Properties of Uncured HTPB Propellant (HTPB 바인더를 이용한 미 경화 추진제의 연소 특성)

  • Kim, Nakhyun;Kim, Jungeun;Hong, Myungpyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 2016
  • In this study, we examined the burning rate of the uncured propellant (with and without a curing agent application) in order to inspect the process of the HTPB solid propellant. The burning rate of the uncured propellant, that did not contain the curing agent, was approximately 9.7 mm/s at 1000 psi. In relation to the curing time, the burning rate was constant. The propellant, with the curing agent application, was approximately 8.1 mm/s showed a tendency of slowing as it burned. When the cure reaction rate was low, in accordance to the time, there were small changes in burn rate. However, when the cure reaction rate was high, the difference in burning rate was increased. The burning rate of a fully-cured propellant was approximately 6.8 mm/s, which appeared to be the lowest in order.

Study on the Enhancement of Burning Rate of HTPB/AP Solid Propellants (HTPB/AP계 고체 추진제의 연소속도 증진 방안 연구)

  • Lee, Sunyoung;Ryu, Taeha;Hong, Myungpyo;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.21-27
    • /
    • 2017
  • In this paper, in order to control the burning rate and pressure exponent of HTPB/AP/Al based propellant for the improvement of performance, the effect of the size ratio of AP particles and various contents of Butacene as burning catalyst on combustion properties was investigated. In the propellant formulation with both $28{\mu}m$ Al of 23% and Butacene of 3%, the burning rate and pressure exponent were increased with increasing the contents of $9{\mu}m$ AP particles. And the burning rate was increased with increasing the contents of Butacene with showing the relatively low pressure exponent in the propellant containing Butacene. However, the significant variations of pressure exponent by contents of Butacene were not observed.

The principle and a prototype system for burning rate measurement of solid propellants using ultrasound (초음파를 이용한 고체추진제 연소속도의 측정원리 및 시범시스템 개발)

  • Song Sung-Jin;Jeon Jin-Hong;Kim Hak-Joon;Kim In-Chul;Ryoo Baek-Neung;Yoo Ji-Chang;Jung Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.259-265
    • /
    • 2005
  • To measure burning rate of solid propellants using ultrasonic technique, a special closed bomb and an ultrasonic and pressure measurement system are fabricated. During pressurization tests and burning tests on propellants, ultrasonic and pressure signal are acquired in realtime fashion by this system. Based on acquired signals, analysis programs using two different algorithm which can measure burning rates corresponding to pressures are compared. One algorithm is to correct sound velocity variation of propellants and solid couplant, another one is only to correct sound velocity variation of propellants. And accuracies of homing rates measured through these algorithms are calculated through comparison with homing rates measured using strand burner method.

  • PDF

The Principle and a Prototype System for Burning Rate Measurement of Solid Propellants Using Ultrasound (초음파를 이용한 고체추진제 연소속도 측정원리 및 시범시스템 개발)

  • Song, Sung-Jin;Jeon, Jin-Hong;Kim, Hak-Joon;Oh, Hyun-Taek;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.61-68
    • /
    • 2006
  • To measure burning rate of solid propellants using ultrasound, a special closed bomb and an ultrasonic and pressure measurement system are fabricated. During pressurization tests and homing tests on propellants, ultrasonic and pressure signal are acquired in real time fashion by this system. Based on acquired signals, analysis programs using two different algorithm which can measure burning rates corresponding to pressures are compared. One algorithm is to correct sound velocity variation of propellants and solid couplant, another one is only to correct sound velocity variation of propellants. And accuracies of homing rates measured through these algorithms are calculated through comparison with the burning rates measured using strand burner method.

A study on ultrasonic signal denoising techniques for improving ultrasonic burning rate measurements of solid propellants (고체추진제 연소속도 측정의 정밀도 향상을 위한 초음파 신호 잡음제거 기술 연구)

  • Jeon, Su-Kyun;Song, Sung-Jin;Kim, Hak-Joon;Ko, Sun-Feel;Oh, Hyun-Taek;Kim, In-Chul;Yoo, Ji-Chang;Jung, Jung Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.200-203
    • /
    • 2009
  • Ultrasonic techniques have the advantage of determining the burning rates with wide range of pressure in only a single test. However, ultrasonic techniques have a drawback, which is that they are using high frequency transducers and it is easily affected by noise. Therefore, ultrasonic measurement method needs noise reduction algorithm to improve or grantee accuracy of burning rate measurements of solid propellants using ultrasound. Thus, in the present study, we propose a noise reduction method of measured ultrasonic signals by applying wavelet shrinkage.

  • PDF