• Title/Summary/Keyword: 스톡스유동

Search Result 93, Processing Time 0.025 seconds

NUMERICAL ANALYSIS OF CAVITATING FLOW PAST CYLINDER WITH THREE DIFFERENT CAVITATION MODELS (서로 다른 캐비테이션 모델을 이용한 실린더 주위의 캐비테이션 유동현상 전산해석)

  • Kim, S.Y.;Park, W.G.;Jung, C.M.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.60-66
    • /
    • 2011
  • Engineering interests of submerged bodies and turbomachinery has led researchers to study various cavitation models for decades. The governing equations used for the present work are the two-phase Navier-Stokes equations with homogeneous mixture model. The solver employed on implicit dual time preconditioning algorithm in curvilinear coordinates. Three different cavitation models were applied to two axisymmetric cylinders and compared with experiments. It is concluded that the Merkle's new cavitation model has successfully accounted for cavitating flows and well captured the re-entrant jet phenomenon over the 0-caliber cylinder.

A Numerical Analysis of Three-Dimensional Flow Within a Transonic Fan (천음속 팬의 3차원 유동에 관한 수치해석)

  • Chung, Juhyun;Ko, Sungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.82-91
    • /
    • 1999
  • A numerical analysis based on the three-dimensional Reynolds-averaged Navier-Stokes equation has been conducted to investigate the flow within a NASA rotor 67 transonic fan. General coordinate transformations are used to represent the complex blade geometry and an H-type grid is used. The governing equations are solved using implicit LU-SGS scheme for the time-marching integration and a standard ${\kappa}-{\varepsilon}$ model is used with wall functions for the turbulence modeling. The computations are compared with the experimental data and a detailed study of the flow structures near peak efficiency and near stall is presented. The calculated overall aerodynamic efficiency and three-dimensional shock system agree well with the laser anemometer data.

NUMERICAL CODE DEVELOPMENT OF THE MULTIPHASE FLOW AROUND AN UNDERWATER VEHICLE UNDER SUBMARINE WAKE. (후류중에 있는 수중운동체의 캐비테이션 유동 현상 및 유체력 변화 해석 코드 개발)

  • Park, S.I.;Ha, C.T.;Park, W.G.;Lee, K.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.115-121
    • /
    • 2010
  • Cavitating flow is widely shown in many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work focuses on the numerical analysis of the multiphase flow around the underwater vehicle which was launched from a submarine. The governing equation is the Navier-Stokes equation with a homogeneous mixture mode. The multiphase flow solver uses an implicit preconditioning scheme in curvilinear coordinate. For the code validation, the results from the present work are compared with the existing experimental and numerical results, and a reasonably good agrements are obtained. The multiphase flow around an underwater vehicle is simulated which includes submarine wake effects.

  • PDF

LOW-SPEED AERODYNAMIC CHARACTERISTIC OF TRANSITION FLOW OVER THE NACA0012 (NACA0012 천이 유동의 저속 공력 특성 해석)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Kim, Sang-Ho;Byun, Yung-Hwan;Jung, Kyung-Jin;Kang, In-Mo
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.1-8
    • /
    • 2010
  • Laminar separation bubble and transitional flow over the NACA0012 are investigated at a moderate range of Reynolds numbers. A Reynolds-Averaged Navier-Stokes code is coupled with an empirical transition model that can predict transition onset points and the length of transition region. Without solving the boundary layer equations, approximated e-N method is directly applied to the RANS code and iteratively solved together. The computational results are compared with the experimental data for the NACA0012 airfoil. Results of transition onset point and the length are compared well with experimental data and Xfoil prediction. The present RANS results show at high angles of attack better agreement with experimental data than Xfoil results using the boundary layer equations.

EFFECTS OF FLUIDIC OSCILLATOR GEOMETRY ON PERFORMANCE (유체진동기의 형상 변화가 성능에 미치는 영향)

  • Jeong, Han-Sol;Kim, Kwang-Yong
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.77-88
    • /
    • 2016
  • A parametric study on a fluidic oscillator was performed numerically in this work. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations were solved to analyze the flow in the fluidic oscillator. As turbulence closure, $k-{\varepsilon}$ model was employed. Validation of the numerical results was performed by comparing numerical results with experimental data for frequency of the oscillation. The parametric study was performed using five geometric parameters. Performance of the fluidic oscillator was evaluated in terms of velocity ratio and pressure drop. The results show that the inlet channel width and the distance between splitters are important factors in determining the performance of the fludic oscillator.

Study on the Stokes' Flow within a Three-Dimensional Cavity Considering Surface Characteristics (액체의 표면 특성을 고려한 3차원 캐버티 내부의 스톡스 유동 특성 연구)

  • Heo, Hyo-Weon;Jung, Won-Hyuk;Suh, Yong-Kweon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.382-386
    • /
    • 2011
  • In this study, a CFD code is developed to perform simulation of the surface and internal flow of a three-dimensional rectangular cavity driven by an external gas flow. Investigated in this study are surface characteristic such as surface tension, surface dilational viscosity(or surface elasticity), and surface viscosity. Visualization of the surface of water is performed to compare with the numerical results obtained with the developed in-house code. We have found that the surface flow is very sensitive to the surface tension and other configurations. The surface flow velocity obtained from the numerical solution is lower than the experimental result.

  • PDF

Study on the Fluid-Surface Characteristics by Using Flow Visualization and Numerical Simulation of Stokes Flow in a Cavity (3차원 캐버티 표면의 스톡스 유동 가시화 및 수치해석을 통한 표면 특성 연구)

  • Heo, Hyo-Weon;Lee, Heon-Deok;Jung, Won-Hyuk;Cho, Dong-Sik;Suh, Yong-Kweon
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.44-50
    • /
    • 2011
  • In this study, we propose a method for characterizing fluid-mechanical properties of a fluid surface, such as surface dilatational and shear viscosity, by matching the flow visualization and the numerical simulation for a Stokes flow in a three-dimensional cavity. The surface flow is driven by shear stress exerted on the free surface by an external gas flow. The external gas flow is simulated by using a commercial code, while the Stokes flow is calculated by an in-house code. We have found that the surface flow is very sensitive to the surface tension and other properties. The qualitative feature of the surface flow can be reproduced by the parameter tuning.

NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD (2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석)

  • Jeong, S.M.;Park, J.C.;Heo, J.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved successively in the moving least square sense. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as a FVM.

The Effect of Gas Thermochemical Model on the Flowfield of Supersonic Rocket in Propulsive Flight (기체 열화학 모델이 연소 비행하는 초음속 로켓 유동장에 미치는 영향)

  • 최환석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.12-20
    • /
    • 2002
  • An integrated analysis of kerosine/LOX based KSR-III rocket body/plume flowfield has been performed. The analysis has been executed employing three kind of gas thermo-chemical models including calorically perfect gas, multiple species chemically reacting gas, and chemically frozen gas models and their effect on rocket flowfield has been accessed to provide the most appropriate gas thermo-chemical model which meets a specific purpose of performing rocket body and plume analysis. The finite-rate chemically reacting flow solution exhibited higher temperature throughout the flowfield than other gas models due to the increased combustion gas temperature caused by the chemical reactions within the nozzle. All the reactions were dominated only in the shear layer and behind the barrel shock reflection region where the gas temperature is high and the effect of finite-rate chemical reactions on the flowfield was found to be minor. However, the present plume computation including finite-rate chemical reactions revealed major reactions occurring in the plume and their reaction mechanisms and as well.

AN EFFICIENT INCOMPRESSIBLE FREE SURFACE FLOW SIMULATION USING GPU (GPU를 이용한 효율적인 비압축성 자유표면유동 해석)

  • Hong, H.E.;Ahn, H.T.;Myung, H.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • This paper presents incompressible Navier-Stokes solution algorithm for 2D Free-surface flow problems on the Cartesian mesh, which was implemented to run on Graphics Processing Units(GPU). The INS solver utilizes the variable arrangement on the Cartesian mesh, Finite Volume discretization along Constrained Interpolation Profile-Conservative Semi-Lagrangian(CIP-CSL). Solution procedure of incompressible Navier-Stokes equations for free-surface flow takes considerable amount of computation time and memory space even in modern multi-core computing architecture based on Central Processing Units(CPUs). By the recent development of computer architecture technology, Graphics Processing Unit(GPU)'s scientific computing performance outperforms that of CPU's. This paper focus on the utilization of GPU's high performance computing capability, and presents an efficient solution algorithm for free surface flow simulation. The performance of the GPU implementations with double precision accuracy is compared to that of the CPU code using an representative free-surface flow problem, namely. dam-break problem.