• Title/Summary/Keyword: 스토크파

Search Result 2, Processing Time 0.016 seconds

Suppression of Stimulated Brillouin Scattering in Optical Fiber using Sampled-Fiber Brags Grating (샘플링 광섬유 Bragg 격자를 이용한 광섬유 내의 유도 Brillouin 산란 억제)

  • Lee, Ho-Joon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.485-489
    • /
    • 2005
  • I have investigated a scheme for suppressing stimulated Brillouin scattering in optical fibers. The scheme makes use of a sampled Bragg grating fabricated within the fiber used for transmitting intense Q-switched pulses. The grating is designed such that the spectrum of the Stokes pulse generated through stimulated Brillouin scattering falls entirely within its stop band. I show numerically that the number of sampled fiber Bragg gratings in 1 m is applied directly to suppressing stimulated Brillouin scattering rather than the coupling coefficient. This prevents the build up of the backward-propagating Stokes wave and mitigates the deleterious effects of stimulated Brillouin scattering. The simulation shows that 15 ns pulses with 1 kW peak power can be transmitted though a 1 m-long fiber with little energy loss using this scheme.

SPH-Based Wave Tank Simulations (SPH 기법 기반의 파동수조 시뮬레이션)

  • Lee, Sangmin;Kim, Mujong;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.