Deep-learning based style transfer has recently attracted great attention, because it provides high quality transfer results by appropriately reflecting the high level structural characteristics of images. This paper deals with the problem of providing more stable and more diverse style transfer results of such deep-learning based style transfer method. Based on the investigation of the experimental results from the wide range of hyper-parameter settings, this paper defines the problem of the stability and the diversity of the style transfer, and proposes a partial loss normalization method to solve the problem. The style transfer using the proposed normalization method not only gives the stability on the control of the degree of style reflection, regardless of the input image characteristics, but also presents the diversity of style transfer results, unlike the existing method, at controlling the weight of the partial style loss, and provides the stability on the difference in resolution of the input image.
Journal of the Korea Society of Computer and Information
/
v.28
no.8
/
pp.31-38
/
2023
Style transfer is one of deep learning-based image processing techniques that has been actively researched recently. These research efforts have led to significant improvements in the quality of result images. Style transfer is a technology that takes a content image and a style image as inputs and generates a transformed result image by applying the characteristics of the style image to the content image. It is becoming increasingly important in exploiting the diversity of digital content. To improve the usability of style transfer technology, ensuring stable performance is crucial. Recently, in the field of natural language processing, the concept of Transformers has been actively utilized. Attention maps, which forms the basis of Transformers, is also being actively applied and researched in the development of style transfer techniques. In this paper, we analyze the representative techniques SANet and AdaAttN and propose a novel attention map-based structure which can generate improved style transfer results. The results demonstrate that the proposed technique effectively preserves the structure of the content image while applying the characteristics of the style image.
Style transfer based on neural network provides very high quality results by reflecting the high level structural characteristics of images, and thereby has recently attracted great attention. This paper deals with the problem of resolution limitation due to GPU memory in performing such neural style transfer. We can expect that the gradient operation for style transfer based on partial image, with the aid of the fixed size of receptive field, can produce the same result as the gradient operation using the entire image. Based on this idea, each component of the style transfer loss function is analyzed in this paper to obtain the necessary conditions for partitioning and padding, and to identify, among the information required for gradient calculation, the one that depends on the entire input. By structuring such information for using it as auxiliary constant input for partition-based gradient calculation, this paper develops a recursive algorithm for super high-resolution image style transfer. Since the proposed method performs style transfer by partitioning input image into the size that a GPU can handle, it can perform style transfer without the limit of the input image resolution accompanied by the GPU memory size. With the aid of such super high-resolution support, the proposed method can provide a unique style characteristics of detailed area which can only be appreciated in super high-resolution style transfer.
우리는 전이 학습을 이용하여 원하는 특정 패션 스타일 분류기를 학습하였다. 패션 스타일 검색 결과물을 온라인 쇼핑몰과 연결하는 웹 서비스를 사용자에게 제공한다. 패션 스타일 분류기는 구글에서 이미지 검색을 통해 수집된 데이터를 이용하여 ResNet34[1]에 전이 학습하였다. 학습된 분류 모델을 이용하여 사용자 이미지로부터 패션 스타일을 17가지 클래스로 분류하였고 F1 스코어는 평균 65.5%를 얻었다. 패션 스타일 분류 결과를 네이버 쇼핑몰과 연결하여 사용자가 원하는 패션 상품을 구매할 수 있는 서비스를 제공한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1339-1342
/
2022
예술적 스타일 전이는 예술 작품이 지닌 특징을 다른 이미지에 적용하는 이미지 처리의 오랜 화두 중 하나로, 최근에는 StyleGAN 과 같이 미리 학습된 GAN(생성적 적대 신경망)을 통해 제한된 데이터로도 고해상도의 예술적 초상화를 생성하도록 학습하는 연구가 다양한 방면에서 성과를 내고 있다. 본 논문에서는 2 가지 경로의 StyleGAN과 Facial Destylization 을 통해 고해상도의 예시 기반 스타일 전이를 달성한 DualStyleGAN 연구에 대해 소개하고, 기존 연구에서 사용된 Facial Destylization 방법이 지닌 한계점을 분석한 뒤, 이를 개선한 새로운 방법, Re-Destyle을 제안한다. 새로운 Re-Destyle 방법으로 Facial Destylization 을 적용할 경우 학습 시간을 기존 연구의 방법보다 20 배 이상 개선할 수 있으며 그 결과 1000 개 이하의 적은 데이터와 1~2 시간의 추가 학습만으로도 원하는 타겟 초상화 스타일에 대해 1024×1024 수준의 고해상도의 예시 기반 초상화 스타일 전이 및 이미지 생성 모델을 학습할 수 있다.
Style transfer algorithms are currently undergoing active research and are used, for example, to convert ordinary images into classical painting styles. However, such algorithms have yet to produce appropriate results when applied to Korean cultural heritage images, while the number of cases for such applications also remains insufficient. Accordingly, this study attempts to develop a style transfer algorithm that can be applied to styles found among Korean cultural heritage. The algorithm was produced by improving data comprehension by enabling it to learn meaningful characteristics of the styles through representation learning and to separate the cultural heritage from the background in the target images, allowing it to extract the style-relevant areas with the desired color and texture from the style images. This study confirmed that, by doing so, a new image can be created by effectively transferring the characteristics of the style image while maintaining the form of the target image, which thereby enables the transfer of a variety of cultural heritage styles.
색상 전이는 스타일 전이, 색이 바랜 사진의 복원, 색상화, 색상의 보정에 사용될 수 있는 기법이다. 본 연구에서는 기존 색상 전이의 문제점을 해결하기 위해서 영상 분할 기반의 색상전이 기법을 제시한다. 영상에서 색상의 가장 의미있는 최소 단위를 픽셀로 보고 있는 기존 연구에 반해서, 본 연구에서는 영상 조각을 영상에서 가장 의미 있는 최소 단위로 보고 색상 전이를 수행한다. 영상 분할 기반의 색상 전이를 통해서 기존 연구에서 발생할 수 있었던 픽셀간의 코헤런스 문제를 해결한다. 또한 영상 분할 기반으로 했을 때에 생길 수 있는 경계 문제를 해결하기 위한 새로운 방법을 제시한다. 제시된 기법을 이용해서 색상 전이의 응용인 스타일 전이에 적용한다.
Texture transfer is a method to transfer the texture of an input image into a target image, and is also used for transferring artistic style of the input image. This study presents a real-time texture transfer for generating artistic style video. In order to enhance performance, this paper proposes a parallel framework using T-shape kernel used in general texture transfer on GPU. To accelerate motion computation time which is necessarily required for maintaining temporal coherence, a multi-scaled motion field is proposed in parallel concept. Through these approach, an artistic texture transfer for video with a real-time performance is archived.
본 논문은 사전 학습된 심층생성모델을 기반으로 가수 별 가사의 특성을 반영하여 새로운 가사를 생성하는 모델을 소개한다. 베이스 모델로 한국어 사전 학습 모델 KoGPT-2 를 사용하였으며, 총 가수 10 명의 노래 823 곡을 수집하여 미세조정 기법을 바탕으로 학습하였다. 특히, 가수 별로 구분한 가사를 학습 데이터로 구축하여, 가수 별로 독특하게 나타나는 가사 스타일이 전이되도록 하였다. 가수의 이름과 시작 단어를 입력으로 주고 작사를 수행한 실험 결과, (i) 가수 별로 생성되는 가사의 어휘와 스타일이 그 가수의 기존 곡들의 가사와 유사함을 확인하였고, (ii) 작사 결과 가수 별 차이를 확인하였다. 추후 설문을 통해, 개별 가수들의 가사와 생성된 가사의 어휘와 스타일 유사성을 확인하고, 가수 별 차이 또한 확인하고자 한다.
Annual Conference on Human and Language Technology
/
2003.10d
/
pp.235-240
/
2003
본 논문에서는 영한 자동번역 시스템에 한국어 스타일 생성 패턴을 적용함으로써 영한 번역 품질을 향상하고자 하는 것이 목표이다. 이러한 목표는 기존의 원문에 대한 번역문의 정보 전달 정확성을 측정하는 1차원적인 번역률 평가 방법에서 벗어나 번역문의 정보 정확성뿐만 아니라 자연스러움도 평가할 수 있는 2차원적인 번역률 평가방법으로써 정확성과 스타일을 동시에 평가하는 방법을 제안한다. 2차원적인 번역률 평가 방법에 따라 스타일 생성 패턴이 적용되기 전과 적용된 후의 평가 결과는 100문자의 샘플문을 대상으로 하였을 때, 스타일 생성 패턴에 의해서만 0.5%의 번역률이 향상되는 것을 관찰하였다. 본 논문에서의 스타일 생성 패턴은 단순히 언어간 스타일 차이만 적용한 것이며 향후에는 신문, 일기예보, 기술 매뉴얼과 같은 특정 그룹을 위한 스타일 생성 패턴을 적용할 계획이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.