• Title/Summary/Keyword: 스크롤 깃

Search Result 4, Processing Time 0.015 seconds

A Study on the Leakage Analysis of Scroll Compressor with Thermal Deformation Considered (열변형을 고려한 스크롤 압축기의 누설 해석에 관한 연구)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2428-2437
    • /
    • 2000
  • In general, it is known that the portion of leakage loss is more than 20 % of total loss in scroll compressor. So far many studies have been done to improve the leakage problem and volumetric efficiency. In order to do this it is necessary that the leakage is exactly evaluated for conventional scroll model. Almost all studies that have been done were assumed that the clearance remains constant while operating. But in actual operating conditions, scroll wrap is deformed due to elevated refrigerant gas temperature. And this makes the leakage clearance change, so the leakage mass flow and the volumetric efficiency are also changed. In this study we assumed the steady state operating condition and obtain the average temperature and convection heat transfer coefficient in terms of involute angle. With these results, using finite element method we analyzed the heat transfer of scroll wrap, then did thermal deformation analysis. Then we obtain the leakage clearance and do the leakage and volumetric efficiency analysis. Compared with undeformed feature, we examine the effect of the thermal deformation on the leakage. The results say that the leakage mass flow for the case of considering thermal deformation is less than that for the unconsidered one, and this means that the leakage clearance is reduced due to thermal deformation.

Thermal Deformation Analysis of a Scroll Compressor for Automobile according to the Change of Materials (소재변경에 따른 차량용 스크롤압축기의 열변형 해석)

  • Lee, Hyoungwook;Lee, Geunan;Kim, Jeongbae
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.67-74
    • /
    • 2014
  • An inverter scroll compressor is used for the air conditioning in cars. Scrolls would be changed from the aluminum material to the magnesium material in order to satisfy the light weight trends of cars. The material changing influences on the scroll dimensions particularly the gap between two scrolls. Since the larger gap declines the performance of the compression, the gap between wraps of scrolls or the gap between wraps of scrolls to the plate of the opposite scroll is regarded as an important design variable. This paper is focused on the effects of the thermal stress due to the materials changing. The temperature difference between the inlet and the outlet is about 60 degrees and the highest operating temperature in the compressor is less than 110 degrees. The level of thermal stresses in the magnesium scroll is less than the result from aluminum one. The trend of the deformation is revealed that the normal directional deformation is 2 times lager than the in-plane directional deformation. Therefore the gap between the top of the wrap to the plate of the opposite scroll become more important than the other gaps. The orbiting scroll deforms larger than the fixed scroll by the thermal stresses. The deformation of the magnesium scroll is about 10% lager than that of the aluminum scroll. This value is similar to the ratio of the coefficients of thermal expansion of two materials. At the initial design stage, the results give many useful guides to engineers to propose gaps between parts.

Off-design performance analysis of radial inflow turbines with or without variable area guide vane (가변안내깃이 존재하거나 없는 구심터빈의 탈설계 성능해석)

  • 한기수;김광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2171-2180
    • /
    • 1991
  • An analysis model for off-design performance of radial inflow turbines with or without variable area guide vane is developed, where two important factors in loss models, total pressure ratio between variable area guide vane exit and scroll casing inlet and rotor loss coefficient are determined without experimental data. The analysis results show that the predicted trends with or without variable area guide vane are consistent with the experimental observations. The comparison of present method with the well-known NASA off-design performance analysis program shows that the mass flow rate and static efficiency by present analysis are in good agreement with those by the NASA program. Therefore, this method can be used to predict off-design performance of radial inflow turbines with validity of the loss models used by present analysis.

Design Method of the Sirocco Fan Considering Aeroacoustic Performance Characteristics (공력음향학적 특성을 고려한 시로코 팬의 설계 방법)

  • Lee, Chan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.59-64
    • /
    • 2010
  • A design method of Sirocco fan is developed for constructing 3-D impeller and scroll geometries, and for predicting both the aerodynamic performance and the noise characteristics of the designed fan. The aerodynamic blading design of fan is conducted by blade angle, camber line determinations and airfoil thickness distribution, and then the scroll geometry of fan is designed by using logarithmic spiral. The aerodynamic performance of designed fan is predicted by the meanline analysis with flow blockage, slip and pressure loss correlations. Based on the predicted performance data, fan noise is predicted by two models for cutoff frequency and broadband noise sources. The present predictions for the performance and the noise level of actual fans are well agreed with measurement results.