• Title/Summary/Keyword: 스케일 특성

Search Result 582, Processing Time 0.023 seconds

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.

H.264/SVC Spatial Scalability Coding based Terrestrial Multi-channel Hybrid HD Broadcasting Service Framework and Performance Analysis on H.264/SVC (H.264/SVC 공간 계위 부호화 기반 지상파 다채널 하이브리드 고화질 방송 서비스 프레임워크 및 H.264/SVC 부호화 성능 평가)

  • Kim, Dae-Eun;Lee, Bum-Shik;Kim, Mun-Churl;Kim, Byung-Sun;Hahm, Sang-Jin;Lee, Keun-Sik
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.640-658
    • /
    • 2012
  • One of the existing terrestrial multi-channel DTV service frameworks, called KoreaView, provides four programs, composed of MPEG-2 based one HD video and H.264/AVC based three SD videos within one single 6MHz frequency bandwidth. However the additional 3 SD videos can not provide enough quality due to its reduced spatial resolution and low target bitrates. In this paper, we propose a framework, which is called a terrestrial multi-channel high quality hybrid DTV service, to overcome such a weakness of KoreaView services. In the proposed framework, the three additional SD videos are encoded based on an H.264/SVC Spatial Base layer, which is compliant with H.264/AVC, and are delivered via broadcasting networks. On the other hand, and the corresponding three additional HD videos are encoded based on an H.264/SVC Spatial Enhancement layer, which are transmitted over broadband networks such as Internet, thus allowing the three additional videos for users with better quality of experience. In order to verify the effectiveness of the proposed framework, various experimental results are provided for real video contents being used for DTV services. First, the experimental results show that, when the SD sequences are encoded by the H.264/SVC Spatial Base layer at a target bitrate of 1.5Mbps, the resulting PSNR values are ranged from 34.5dB to 42.9dB, which is a sufficient level of service quality. Also it is noted that 690kbps-8,200kbps are needed for the HD test sequences when they are encoded in the H.264/SVC Spatial Enhancement layer at similar PSNR values for the same HD sequences encoded by MPEG-2 at a target bitrate of 12 Mbps.