• Title/Summary/Keyword: 스캔 가능한 치유지대주

Search Result 2, Processing Time 0.018 seconds

Posterior single implant prosthesis using scannable healing abutment (스캔이 가능한 치유지대주를 이용한 구치부 단일 임플란트 수복 증례)

  • Kim, Seong-Min;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.432-438
    • /
    • 2019
  • Accurate impression taking for the success of implant prosthesis is a very important process. Methods of taking implant impression include the conventional method using impression coping and impression material, and the digital method using an intraoral scanner and scanbody. However, the impression coping or the scanbody must install after remove healing abutment. Because of this, the dentist must repeat the process of removing and installing the healing abutment, the impression coping or the scanbody several times. In addition, the impression coping or the scanbody rises higher than the occlusal surface, so the patient has the inconvenience of constantly maintaining the open state. Recently, a scannable healing abutment, which can be scanned by a intraoral scanner directly, without the need to remove the healing abutment by applying a scannable part of the scanbody to the healing abutment, was introduced. We present a case of single posterior implant prosthesis using a scannable healing abutment.

Multiple fixed implant-supported prosthesis using temporary denture and scannable healing abutment: a case report (임시의치와 스캔가능한 치유지대주를 이용한 고정성 임플란트 보철 수복 증례)

  • Hyung-Jun Kim;Hyeon Kim;Woo-hyung Jang;Kwi-dug Yun;Sang-Won Park;Hyun-Pil Lim
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.250-259
    • /
    • 2023
  • The use of digital technology in fixed prosthetic treatment using implants enables predictive treatment through diagnosis and virtual surgery by integrating clinical and radiological information of patients. Existing digital scanning methods require several components to be removed, such as removing the healing abutment and connecting the scan body. In the scannable healing abutment developed in consideration of this point, scanning is performed directly on the healing abutment, maintaining soft tissue sealing and simplifying scanning. Digital technology can also be used when obtaining the intermaxillary relationship. Recently, various digital technologies have been reported to acquire the intermaxillary relationship of edentulous patients using surgical guides, patient-specific scanning devices, or scans of the inside of temporary dentures. In this case, the implant-supported fixed prosthesis treatment was performed through scanning the scannable healing abutment and the inner side of the temporary denture to obtain the intermaxillary relationship, thereby simplifying the treatment process and obtaining aesthetically and functionally excellent clinical results.