• Title/Summary/Keyword: 스월 분무장치

Search Result 9, Processing Time 0.027 seconds

Optimum Design of Dual Orifice Fuel Nozzle (이중 오리피스 연료 노즐 최적설계)

  • Lim, O-Kaung;Choi, Eun-Ho;Kim, Sung-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.407-416
    • /
    • 2007
  • Fuel spray nozzle has a critical effect on combustion characteristics. Mass flow rate and SMD(sauter mean diameter) were selected as design variables by using the experiment data of various types of duplex fuel nozzles for the swirl atomizers. The sensitivity of each design variable on the mass flow rate and SMD was analyzed and the uniformity of mass flow rate was investigated through the shape optimization of duel-orifice-type swirl atomizers. The design variables that have a little effect on the optimum design were excluded using the DOE(design of experiments) method, which enabled the optimization of sensitive design variables on mass flow rate and limit tolerance. The SMD of the research spray nozzle that was used in this study was found to be most similar to that of the calculation results using the Jasuja's SMD relationship. This study showed the specific characteristics of duel orifice type swirl atomizers and the optimization of these kinds of nozzle. This study provided the optimization design of mass flow rate and its allowable tolerance.

Spray Characteristics of Swirl-coaxial Injector According to the Recess Length and Injection Pressure Variation (리세스 길이 및 분사압력 변이에 따른 스월 동축형 인젝터의 분무특성)

  • Bae, Seong Hun;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.68-76
    • /
    • 2016
  • This research is carried out for the performance evaluation of the injector that is one of the critical components of bipropellant-rocket-engine. Spray characteristics are investigated in detail according to the recess length and injection pressure on the swirl-coaxial-injector using gaseous methane and liquid oxygen as propellants. A visualization is conducted by the Schlieren photography that is composed of a light source, concave mirrors, knife, and high-speed-camera. A hollow-cone-shape is identified in the liquid spray that is spread only by inner injector and the spray angle is decreased due to the diminution of swirl strength in accordance with the increase of the length of injector orifice. When the injector sprays the liquid through the inner injector with the aid of gas through the outer injector, the spray angle in external mixing region tends to increase with rise of the recess length, while in internal mixing region, it is decreased. It is also confirmed that the same tendency of the spray angle with recess length appears irrespective of the injection pressure of liquid spray.

A Study on the Flow Characteristics of Circular and Swirl Jets (원형 및 스월제트의 유동특성에 관한 연구)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.69-74
    • /
    • 2014
  • The comparison of the flow characteristics between circular and swirl jets which were controlled by the spinner attachment inside the airtube were conducted in this study. Swirl jet means a flow in whirls by mixing the flow of axial and tangential direction. Swirl flow has been used for the improvement of the combustion efficiency in the combustor. This flow is controlled by the spinner which has several vanes inclined by certain angles to the axial direction. In this study, angle of vane $30^{\circ}$ and diameter ratio of outlet to inlet of the airtube 0.73 were made. These spec. should find on the general gun type burner built in the domestic small size boiler. As the flow characteristics, axial and tangential velocities were measured by using the 2-D hot-wire velocimeter system and analyzed statistically. And also this research conducted a practical experiment considering to the attached belongings likes as ignitor, nozzle etc. on the airtube of the gun type burner. As a result, swirl occurred at the occasion of beingness and flow region extended considerably toward the radial direction. But effect of swirl did not transmit to the downstream. And the complicated flow was appeared regardless of the existence of spinner because of the effect of belongings.

Design and Implementation of Cold-Flow and Hot-Fire Test Stand of a Cryogenic Propellant Injector Used in LRE (초저온 추진제를 사용하는 액체로켓용 인젝터의 수류/연소시험장치 설계 및 제작)

  • Kim, Do-Hun;Park, Young-Il;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.61-65
    • /
    • 2010
  • To research and develop a liquid rocket engine injector, it needs empirical studies about the hydrodynamic and spray characteristics such as pressure drop, mixing and atomization. In this study, the design and implementation of lab-scale cold-flow/hot fire test stand which can supply cryogenic propellant and be controlled by time-critical LabVIEW cyclogram logic has been done. In order to visualize the spray of a liquid-centered swirl coaxial injector in cryogenic condition, LN2-GN2 cold-flow test has been done, and combustor assembly and thrust bed for LOX-$GCH_4$ hot-fire test have been fabricated.

  • PDF

Spray Characteristics of the Pressure Swirl Injector for the APU Gas Turbine Engine (APU 가스터빈엔진 압력식 스월인젝터의 분무특성)

  • Choi, Chea-Hong;Choi, Seong-Man;Lim, Byeong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.359-364
    • /
    • 2007
  • Spray characteristics of the APU gas turbine engine were investigated. In order to understand blow out phenomena of the APU engine, we performed fuel spray test. In the test, four operating conditions such as sea level idle, sea level max power, 20,000 feet idle, 20,000 feet max power were used as spray experimental conditions. PDPA(phase Doppler Particle Analyzer) was used for measuring the particle diameter and velocity. Also spray visualization was performed by using ND-YAG sheet laser beam. From the test result, in the case of 20,000 feet idle condition, SMD is about 100 ${\mu}m$ and maximum particle velocity is about 10 m/s. For the flame stability, spray quality should be improved at 20,000 feet idle condition.

  • PDF

Spray Characteristics of Jet According to Position of Injector Hole in Cross Flow (횡단유동내 인젝터 홀의 위치에 따른 제트의 분무 특성)

  • Choi, Myeung Hwan;Shin, DongSoo;Radhakrishna, Kanmaniraja;Son, Min;Koo, jaye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.905-911
    • /
    • 2017
  • Effects of injector position and momentum flux ratio on a vertical jet in a cross flow field were studied qualitatively and shown by using air and water. The experiment was carried out by fixing the momentum flux ratio and varying the position of the injector hole. Conversely, the injector hole position was fixed and the momentum flux ratio was varied. Image visualization was performed by a Shadowgraph technique using a high speed camera. The visualized images were compared for finding differences in spraying through Density Gradient Magnitude Image. It is observed that as the x/d of the apparatus increased the jet break up height decreases and the spray angle also decreases. When x/d is 0, the spray reaches the floor and ceiling at any momentum flux ratio.

  • PDF

Study on Phase-Amplitude Characteristics in a Simplex Swirl Injector with Low Frequency Range (저주파 압력섭동 범위 내에서의 단일 스월 인젝터의 진폭-위상 특성 연구)

  • Khil, Tae-Ock;Chung, Yun-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.19-28
    • /
    • 2010
  • Generally, combustion instability is generated by the mutual coupling between the heat release and the acoustic pressure in the combustor. On the occasion, the acoustic pressure generates the oscillation of the mass flow rate of propellant injected from injector, and this oscillation again affects combustion in the combustor. So, the dynamic characteristics of the injector have been studied to control combustion instability using injector itself in Russia from 1970's. In order to study injector dynamics, a mechanical pulsator for forced pressure pulsation is produced and the method to quantify the mass flow rate of the propellant that is oscillating at the exit of the injector is developed. With the pulsator and the method, pulsating values of the mass flow rate, pressure, liquid film thickness, and axial velocity generated at the exit of the simplex swirl injector are measured in real time. And phase-amplitude characteristics of each parameter are analyzed using these pulsating values acquired at the exit of the simplex swirl injector.

Spray Characteristics of the Pressure Swirl Injector at Airplane Operating Conditions (항공기 작동조건에 따른 압력식 스월 인젝터의 분무특성 연구)

  • Choi, Chea-Hong;Choi, Seong-Man;Rhee, Dong-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.691-694
    • /
    • 2008
  • Spray characteristics of the APU simplex fuel nozzle are investigated. Four flight conditions such as sea level idle, sea level max power, 20,000 feet idle, 20,000 feet max power are used as spray experimental conditions. Spray visualization was performed by using ND-YAG laser. Droplet size and velocity were measured by using PDPA(Phase Doppler Particle Analyzer) system. From the test result, SMD is 100 ${\mu}$m�� and velocity is 10 m/s at 20,000 ft idle condition. In this condition, flame unstability could be occurred due to the higher drop diameter. Therefore it is necessary to decrease the droplet diameter in the high altitude condition.

  • PDF

Spray Characteristics of Jet According to Position of Injector Hole in Crossflow (횡단유동내 인젝터 홀의 위치에 따른 제트의 분무 특성)

  • Choi, Myeung Hwan;Shin, Dong Soo;Radhakrishnan, Kanmaniraja;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.88-96
    • /
    • 2018
  • Effects of injector position and momentum flux ratio on a vertical jet in a cross-flow field are qualitatively studied and displayed using air and water. The position of the injector hole and the momentum flux ratio is changed and image visualization is performed using a shadowgraph technique and a high-speed camera. The visualized images are compared to find differences in spraying using density gradient magnitude image. It is observed that, as the x/d of the apparatus increases, the jet break-up height decreases. When x/d is 0, the spray reaches the bottom and ceiling at any momentum flux ratio.