• Title/Summary/Keyword: 스미어 존

Search Result 12, Processing Time 0.019 seconds

Two-dimensional Model Testing System for Analysis of PVD Installation and Soil Disturbance (PVD 설치 및 지반교란의 분석을 위한 2차원 모형실험 시스템)

  • Kim, Jae Hyun;Choo, Yun Wook;Park, Hyun-Il;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.149-157
    • /
    • 2012
  • In order to investigate the soil disturbance induced by anchor-shoe for PVD installation and the anchoring mechanism, a new two dimensional testing system was developed. By using the developed testing system, 1g and centrifuge model tests were performed, simulating the driving-retrieval process of both conventional symmetric anchor shoe and new asymmetric anchor shoe. Various size anchor-shoes were simulated and the results were compared. The images recorded during the installation were analyzed by image processing technique. The results of the image analysis presented the clay disturbance depending on the size and type of anchor shoe. In addition, from the retrieval process, the anchoring mechanism was revealed and the holding capacity was measured. As results, the size of anchor shoe influences the soil disturbance and holding capacity. The new asymmetric anchor shoe reduces the soil disturbance and improves anchoring performance.

A Assessment of Discharge Capacity of Vertical Drains and Smear Zone Effect from Model Test (실내모형시험을 통한 연직배수재의 통수능력 및 스미어존 영향 평가)

  • Chun, Byung-Sik;Kim, Eui-Seok;Do, Jong-Nam;Kuk, Kil-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1136-1143
    • /
    • 2008
  • The Vertical Drains(Sand Drains, Pack Drain, PBD) is used for Vertical Drains Method in domestic. Each of the drains is selected after it consider a field condition and efficiency of drain. A discharge capacity is very important factor, which to estimate a efficiency. And the smear Zone where disturbance area of in-suit by installation of Vertical Drains is important factor to select a drains. In this study, the complex discharge capacity test was operated for discharge capacity comparison of the Wing Drain and PBD. And a model test was operated to apprehend smear zone of the Wing Drain and PBD. From these tests, it was apprehended an engineering characteristic of vertical drain. The results of the complex discharge capacity test, a discharge capacity fell below $20cm^3/sec$ to $1cm^3/sec$ in more than overburden load $2.5kg/cm^2$. The Wing Drain maintained a over $40cm^3/sec$ in more than overburden load $2.5kg/cm^2$ and minimum discharge capacity $8cm^3/sec$. The results of the smear zone test, a influence bounds of smear zone was more larger in case of the Wing Drain(rectangle) than the PBD. But when a discharge capacity of Wing Drain is considered, it was concluded which smear zone bounds difference was effected in comparison with PBD. I think that it minimized a mandrel section to minimize a smear zone effect range

  • PDF