• Title/Summary/Keyword: 슈퍼스칼라 프로세서

Search Result 44, Processing Time 0.019 seconds

An On-chip Cache and Main Memory Compression System Optimized by Considering the Compression rate Distribution of Compressed Blocks (압축블록의 압축률 분포를 고려해 설계한 내장캐시 및 주 메모리 압축시스템)

  • Yim, Keun-Soo;Lee, Jang-Soo;Hong, In-Pyo;Kim, Ji-Hong;Kim, Shin-Dug;Lee, Yong-Surk;Koh, Kern
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.125-134
    • /
    • 2004
  • Recently, an on-chip compressed cache system was presented to alleviate the processor-memory Performance gap by reducing on-chip cache miss rate and expanding memory bandwidth. This research Presents an extended on-chip compressed cache system which also significantly expands main memory capacity. Several techniques are attempted to expand main memory capacity, on-chip cache capacity, and memory bandwidth as well as reduce decompression time and metadata size. To evaluate the performance of our proposed system over existing systems, we use execution-driven simulation method by modifying a superscalar microprocessor simulator. Our experimental methodology has higher accuracy than previous trace-driven simulation method. The simulation results show that our proposed system reduces execution time by 4-23% compared with conventional memory system without considering the benefits obtained from main memory expansion. The expansion rates of data and code areas of main memory are 57-120% and 27-36%, respectively.

A Hybrid Value Predictor using Speculative Update of the Predictor Table and Static Classification for the Pattern of Executed Instructions in Superscalar Processors (슈퍼스칼라 프로세서에서 예상 테이블의 모험적 갱신과 명령어 실행 유형의 정적 분류를 이용한 혼합형 결과값 예측기)

  • Park, Hong-Jun;Jo, Young-Il
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.107-115
    • /
    • 2002
  • We propose a new hybrid value predictor which achieves high performance by combining several predictors. Because the proposed hybrid value predictor can update the prediction table speculatively, it efficiently reduces the number of mispredicted instructions due to stale data. Also, the proposed predictor can enhance the prediction accuracy and efficiently decrease the hardware cost of predictor, because it allocates instructions into the best-suited predictor during instruction fetch stage by using the information of static classification which is obtained from the profile-based compiler implementation. For the 16-issue superscalar processors, simulation results based on the SimpleScalar/PISA tool set show that we achieve the average prediction rates of 73% by using speculative update and the average prediction rates of 88% by adding static classification for the SPECint95 benchmark programs.

2-Level Adaptive Branch Prediction Based on Set-Associative Cache (세트 연관 캐쉬를 사용한 2단계 적응적 분기 예측)

  • Shim, Won
    • The KIPS Transactions:PartA
    • /
    • v.9A no.4
    • /
    • pp.497-502
    • /
    • 2002
  • Conditional branches can severely limit the performance of instruction level parallelism by causing branch penalties. 2-level adaptive branch predictors were developed to get accurate branch prediction in high performance superscalar processors. Although 2 level adaptive branch predictors achieve very high prediction accuracy, they tend to be very costly. In this paper, set-associative cached correlated 2-level branch predictors are proposed to overcome the cost problem in conventional 2-level adaptive branch predictors. According to simulation results, cached correlated predictors deliver higher prediction accuracy than conventional predictors at a significantly lower cost. The best misprediction rates of global and local cached correlated predictors using set-associative caches are 5.99% and 6.28% respectively. They achieve 54% and 17% improvements over those of the conventional 2-level adaptive branch predictors.

Direction-Embedded Branch Prediction based on the Analysis of Neural Network (신경망의 분석을 통한 방향 정보를 내포하는 분기 예측 기법)

  • Kwak Jong Wook;Kim Ju-Hwan;Jhon Chu Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.9-26
    • /
    • 2005
  • In the pursuit of ever higher levels of performance, recent computer systems have made use of deep pipeline, dynamic scheduling and multi-issue superscalar processor technologies. In this situations, branch prediction schemes are an essential part of modem microarchitectures because the penalty for a branch misprediction increases as pipelines deepen and the number of instructions issued per cycle increases. In this paper, we propose a novel branch prediction scheme, direction-gshare(d-gshare), to improve the prediction accuracy. At first, we model a neural network with the components that possibly affect the branch prediction accuracy, and analyze the variation of their weights based on the neural network information. Then, we newly add the component that has a high weight value to an original gshare scheme. We simulate our branch prediction scheme using Simple Scalar, a powerful event-driven simulator, and analyze the simulation results. Our results show that, compared to bimodal, two-level adaptive and gshare predictor, direction-gshare predictor(d-gshare. 3) outperforms, without additional hardware costs, by up to 4.1% and 1.5% in average for the default mont of embedded direction, and 11.8% in maximum and 3.7% in average for the optimal one.