• Title/Summary/Keyword: 쉴드 TBM 터널링

Search Result 10, Processing Time 0.019 seconds

Case of assembly process review and improvement for mega-diameter slurry shield TBM through the launching area (발진부지를 이용한 초대구경 이수식 쉴드TBM 조립공정 검토 및 개선 사례)

  • Park, Jinsoo;Jun, Samsu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.637-658
    • /
    • 2022
  • TBM tunnel is simple with the iterative process of excavating the ground, building a segment ring-build, and backfilling. Drill & Blast, a conventional tunnel construction method, is more complicated than the TBM tunnel and has some restrictions because it repeats the inspection, drilling, charging, blasting, ventilation, muck treatment, and installation of support materials. However, the preparation work for excavation requires time and cost based on a very detailed plan compared to Drill & Blasting, which reinforces the ground and forms a tunnel after the formation of tunnel portal. This is because the TBM equipment for excavating the target ground determines the success or failure of the construction. If the TBM, an expensive order-made equipment, is incorrectly configured at the assembly stage, it becomes difficult to excavate from the initial stage as well as the main excavation stage. When the assembled shield TBM equipment is dismantled again, and a situation of re-assembly occurs, it is difficult throughout the construction period due to economic loss as well as time. Therefore, in this study, the layout and plan of the site and the assembly process for each major part of the TBM equipment were reviewed for the assembly of slurry shield TBM to construct the largest diameter road tunnel in domestic passing through the Han River and minimized interference with other processes and the efficiency of cutter head assembly and transport were analyzed and improved to suit the site conditions.

Simulation of shield TBM tunneling in soft ground by laboratory model test (실내모형시험을 통한 연약지반의 쉴드 TBM 터널굴착 모사)

  • Han, Myeong-Sik;Kim, Young-Joon;Shin, Il-Jae;Lee, Yong-Joo;Shin, Yong-Suk;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.483-496
    • /
    • 2013
  • This paper presents the shield TBM technology in soft ground tunnelling. In order to perform this study, a scale model test was carried out using the developed small scaled shield TBM machine. The various instrumentations were conducted during the simulation of tunnelling. In addition, the ground behavior due to the shield TBM operation parameters was measured during the simulation. Based on the simulation results, the stability of the ground was evaluated and the fundamental shield TBM tunnelling technique in the soft ground was suggested. In conclusion, design's reliability through laboratory small scale model test about Shield-TBM section was obtained, and both the improvement plan for safety during construction and the construction plan for securing airport runway's safety during tunnel passing by Shield-TBM propulsion were suggested.

A Design and Operation of EPBM Applied in Fort Canning Boulder Bed of Singapore (싱가포르 포트캐닝 전석층에 적용된 EPBM의 설계 및 시공)

  • Kim, Uk Young;Noh, Seung Hwan;Noh, Sang Rim
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.417-422
    • /
    • 2015
  • This paper introduces the design and operational considerations for TBM tunneling in boulder bed which poses significant problems in terms of advance rate and machine wear. Managing these problems is difficult since normal soil investigation techniques do not accurately predict the presence and frequency of boulders. This has leads to considerable extra costs and delays during construction. In this paper, EPBM design and operational parameters, cutter wear characteristics and soil conditioning method in soft ground condition were studied and key successes were highlighted for future projects in similar ground condition.

A study on the face pressure control and slurry leakage possibility using shield TBM model test (축소 모형실험을 통한 토피조건별 이수압식 쉴드 TBM의 챔버압 및 이수분출 가능성 평가)

  • Koh, Sungyil;Shin, Hyunkang;La, You-Sung;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.277-291
    • /
    • 2020
  • Shield TBM is a tunnelling method that has a wider range of applications in the poor ground condition compared to conventional tunnels (Drill and Blast). Currently, a 13.3 m large-diameter slurry shield TBM is preparing for construction to pass under the Han River. Shield TBM is divided into slurry and EPB shield TBM, and management items during construction are different depending on each characteristic. In this paper, the equipment type, origin, application case and trouble case were analyzed for slurry shield TBM, which is mainly constructed in soft ground. In addition, 2D and 3D model tests were conducted on the condition of soil depth for the possibility of slurry leakage into front of the equipment, with appropriate chamber pressure. Based on this paper, it proposed to provide basic and reference data for proper excavation surface pressure and chamber pressure during construction of slurry shield TBM under soft ground conditions, and proposed measures to minimize stability and environmental decline due to slurry ejection.

Dynamic response of segment lining due to train-induced vibration (세그먼트 라이닝의 열차 진동하중에 대한 동적 응답특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.305-330
    • /
    • 2023
  • Unlike NATM tunnels, Shield TBM tunnels have split linings. Therefore, the stress distribution of the lining is different even if the lining is under the same load. Representative methods for analyzing the stress generated in lining in Shield TBM tunnels include Non-joint Mode that does not consider connections and a 2-ring beam-spring model that considers ring-to-ring joints and segment connections. This study is an analysis method by Break-joint Mode. However, we do not consider the structural role of segment lining connections. The effectiveness of the modeling is verified by analyzing behavioral characteristics against vibration loads by modeling with segment connection interfaces to which vertical stiffness and shear stiffness, which are friction components, are applied. Unlike the Non-joint mode, where the greatest stress occurs on the crown for static loads such as earth pressure, the stress distribution caused by contact between segment lining and friction stiffness produced the smallest stress in the crown key segment where segment connections were concentrated. The stress distribution was clearly distinguished based on segment connections. The results of static analysis by earth pressure, etc., produced up to seven times the stress generated in Non-joint mode compared to the stress generated by Break-joint Mode. This result is consistent with the stress distribution pattern of the 2-ring beam-spring model. However, as for the stress value for the train vibration load, the stress of Break-joint Mode was greater than that of Non-joint mode. This is a different result from the static mechanics concept that a segment ring consisting of a combination of short members is integrated in the circumferential direction, resulting in a smaller stress than Non-joint mode with a relatively longer member length.

Development of disc cutter wear sensor prototype and its verification for ensuring construction safety of utility cable tunnels (전력구 터널 건설안전 확보를 위한 디스크커터 마모측정시스템 시작품 개발 및 성능검증)

  • Jung Joo Kim;Hee Hwan Ryu;Seung Woo Song;Seung Chul Do;Ji Yun Lee;Ho Young Jeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.91-111
    • /
    • 2024
  • Most of utility cable tunnels are constructed utilizing shield TBM as part of the underground transmission line project. The TBM chamber is the only space inside the tunnel that encounters rock and soil, and is the place with the highest frequency of accident exposure, such as collapse and collision accidents. Since there is currently no way to measure the disc cutter wear from outside the chamber, frequent inspection by workers is essential. Accordingly, in this study, in order to prevent safety accidents inside the TBM chamber and expect the effect of shortening the construction period by reducing the number of chamber openings, the concept of disk cutter wear measurement technology was established and a prototype was produced. By considering prior technology and determining that magnetic sensors are most suitable for the excavation environment, wear measurement sensor package were developed integrating magnetic sensors, wireless communication modules, power supply, external casing, and monitoring systems. To verify the performance of the prototype in an actual excavation environment, a full-scale tunnelling test was performed using a 3.6 m EPB shield TBM. Based on the full-scale tests, five prototypes were operated normally among eight prototypes. It was analyzed that sensor measurement, wireless communication, and durability performance were secured within a maximum thrust of 3,000 kN and a rotation speed of 1.5 RPM.

Forward probing utilizing electrical resistivity and induced polarization for predicting soil and core-stoned ground ahead of TBM tunnel face (전기비저항과 유도분극을 활용한 TBM 터널 굴착면 전방 토사지반 및 핵석지반 예측 기법)

  • Kang, Daehun;Lee, In-Mo;Jung, Jee-Hee;Kim, Dohyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.323-345
    • /
    • 2019
  • It is essential to predict ground conditions ahead of a tunnel face in order to successfully excavate tunnels using a shield TBM. This study proposes a forward prediction method for a mixed soil ground and/or a ground containing core stones by using electrical resistivity and induced polarization exploration. Soil conditioning in EPB shield TBM is dependent upon the composition of mixed soils; a special care need to be taken when excavating the core-stoned soil ground using TBM. The resistivity and chargeability are assumed to be measured with four electrodes at the tunnel face, whenever the excavation is stopped to assemble one ring of a segment lining. Firstly, the mixed ground consisting of weathered granite soil, sand, and clay was modeled in laboratory-scale experiments. Experimental results show that the measured electrical resistivity considerably coincides with the analytical solution. On the other hand, the induced polarization has either same or opposite trend with the measured resistivity depending on the mixed ground conditions. Based on these experimental results, a method to predict the mixed soil ground that can be used during TBM tunnel driving is suggested. Secondly, tunnel excavation from a homogeneous ground to a ground containing core stones was modeled in laboratory scale; the irregularity of the core stones contained in the soil layer was modeled through random number generation scheme. Experimental results show that as the TBM approaches the ground that contains core stones, the electrical resistivity increases and the induced polarization fluctuates.

Deformation of segment lining and behavior characteristics of inner steel lining under external loads (외부 하중에 따른 세그먼트 라이닝 변형과 보강용 내부 강재 라이닝의 거동 특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.255-280
    • /
    • 2024
  • If there are concerns about the stability of segment lining due to section deficiency or large deformation in shield TBM tunnel, reinforcement can be done through ground grouting outside the tunnel or by using steel plate reinforcement, ring beam reinforcement, or inner double layer lining inside the tunnel. Traditional analyses of shield TBM tunnels have been conducted using a continuum method that does not consider the segmented nature of segment lining. This study investigates the reinforcement mechanism for double layer reinforced sections with internal steel linings. By improving the modeling of segment lining, this study applies Break-joint mode (BJM), which considers the segmented characteristics of segment lining, to analyze the deformation characteristics of double layer reinforced sections. The results indicate that the existing concrete segment lining functioned similarly to ground reinforcement around the tunnel, rather than distribution the load. In general, both the BJM model considering the segmentation of segment lining and the continuum rigid method were similar deformation shapes and stress distributions of the lining under load. However, in terms of deformation, when the load strength exceeded the threshold, the deformation patterns of the two models differed.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

The effect of tunnel ovality on the dynamic behavior of segment lining (Ovality가 세그먼트 라이닝의 동적 거동 특성에 미치는 영향)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.423-446
    • /
    • 2023
  • Shield TBM tunnel linings are segmented into segments and rings. This study investigates the response characteristics of the stress and displacement of the segment lining under seismic waves through modeling that considers the interface behavior between segments by applying a shell interface element to the contact surface between segments and rings. And there is no management criteria for ovaling deformation of segment linings in Korea. So, this study the ovality criteria and meaning of segment lining. The results of study showed that the distribution patterns of stress and displacement under seismic waves were similar between continuous linings and segment linings. However, the maximum values of stress and displacement showed differences from segment linings. The stress distribution of the continuous lining modeled as a shell type has a stress distribution that has continuity in the 3D cylindrical shape, but the segment lining is concentrated outside the segment, and the largest stress occurs at the location where the contact surface between the segment and the ring is concentrated. This intermittent and localized stress distribution shows an increasing as the ovality of the lining increases at seismic waves. The ovality at which the increase in stress distribution begins to show irregularity and localization is about 150‰. Ovality of 150‰ is an unrealistic value that cannot represent actual lining deformation. Therefore, the ovality of the segment lining increase with depth, but it does not have a significant impact on the stability caused by seismic load.