• Title/Summary/Keyword: 숫돌표면형상

Search Result 8, Processing Time 0.022 seconds

Internal Cylindrical Grinding with Super Abrasive Wheel and Electrolytic In- process Dressing (ELID를 이용한 초미립 숫돌의 원통내면연삭)

  • Jun Qian;Gyung Nyun Kim;Hitoshi Ohmori;Hae Do Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.155-162
    • /
    • 2000
  • 전해 인프로세스 드레싱(ELID)의 응용기술로써 간헐적 드레싱(ELID II) 및 무전극 드레싱(ELID III)이 원통내면 마무리 연삭에 이용되고 있다. 주철본드(CIB-D) 및 메탈레진본드 다이아몬드 숫돌(HRB-D)이 이 방식들에 사용되고 있다. 경면 가공에 있어서 이 두방식은 미립의 숫돌이용으로 일반연삭기에 정밀부속 장치의 보완없이 이용될 수 있다. ELID II 연삭에서 CIB-D숫돌은 파이프 형상의 전극에 의하여 간헐적으로 드레싱되고, 반면에 MRB-D 숫돌은 인프로세스 드레싱 되며 전극은 필요로 하지 않는다. 본 연구에서는 ELID II 및 ELID III 방식에 있어서, 연삭조건 및 연삭입자크기에 대한 연삭특성을 비교검토 하였다. 그 결과, ELID II, III방식 공히 대단히 작은 표면거칠기를 갖는 경면이 얻어짐을 확인하였다.

  • PDF

연삭가공에 있어서 과도적 절삭현상

  • Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.2
    • /
    • pp.10-14
    • /
    • 1984
  • 연삭가공은 숫돌을 구성하는 하나 하나의 입자가 공작물을 절삭하는 과정이므로 연삭현상을 이해하기 위해서는 먼저 개개 절돈의 절삭현상을 알지 않으면 안된다. 연삭입자의 절삭현상을 해명함에 있어서 기초가 되는 것은 입자와 공작물과의 간섭형상이다. 종래의 연삭 이론은 이와같은 기하학적 간섭형상이 모두 chip이 되어 제거된다(연소입자와 공작물과의 간섭 과정에서는 절삭현상만이 존재한다.)는 가정하에 연삭기구를 해석하려 하였으나 최근에 이르러 상호간섭 조건을 경계조건으로 하여 많은 사람들에 의해 연소입자의 절삭현상을 연구한 결과 연삭입자의 절삭과정은 과도적 절삭임이 밝혀졌다. 이와같은 연삭현상은 새로운 연삭이론에 기초가 될 뿐만아니라 Chip 과 표면생성기구의 관점에서도 극히 중요한 것이 된다.

  • PDF

Surface Grinding Process by Slot-shaped Grinding Wheel (슬롯형상의 연삭숫돌에 의한 평면연삭가공)

  • 왕덕현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.52-59
    • /
    • 1999
  • An experimental study on the grinding temperature, surface roughness and Acoustic Emission(AE) signals was conducted with different shapes of wheel. The grinding characteristics for slotted shapes of wheel changed by width and helical angle, were compared with those by general one. Lower grinding temperature was obtained for 30$^{\circ}$helical angle with 10mm width and Root Mean square(RMS) values of AE signals were lower for slotted shapes rather than general one. Surface roughness characteristics of slotted shapes found to be rough but the value of roughness for 45$^{\circ}$helical angel with 6mm width, represented to similar tendency general one.

  • PDF

A Study on the Grinding of Titanium Alloy, Part2 : Grinding characteristics by using Superabrasives (티타늄 합금의 연삭에 관한 연구, Part2 : 초연마재를 사용한 연삭특성)

  • Kim, S. H.;Choi, H.;lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1076-1079
    • /
    • 2001
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6Al-4V). Grinding experiments were performed at various grinding conditions. The grinding forces and grinding force ratio were measured to investigate the grindability of titanium alloy with the Diamond and CBN wheel. To investigate the grinding characteristics of titanium alloy grinding force ratio and grinding ratio were measured. Surface profile of wheel was also measured with tracer and the ground surfaces and chip were observed with SEM. Grinding-ratio of titanium alloy was much lower than that of other materials. Grinding-ratio of titanium alloy with Diamond wheel was almost six times larger than that with CBN wheel.

  • PDF

A Study on Ultra Precision Machining for Aspherical Surface of Optical Parts (비구면 광학부품의 초정밀 가공에 관한 연구)

  • Lee, Ju-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.195-201
    • /
    • 2002
  • This paper deals with the precision grinding for aspherical surface of optical parts. A parallel grinding method using the spherical wheel was suggested as a new grinding method. In this method, the wheel axis is positioned at a $\pi$/4 from the Z-axis in the direction of the X-axis. An advantage of this grinding method is that the wheel used in grinding achieves its maximum area, reducing wheel wear and improving the accuracy of the ground mirror surface. In addition, a truing by the CG (curve generating) method was proposed. After truing, the shape of spherical wheel transcribed on the carbon is measured by the Form-Talysurf-120L. The error of the form in the spherical wheel which is the value ${\Delta}x$ and $R{^2}{_y}$ inferred from the measured profile data is compensated by the re-truing. Finally, in the aspherical grinding experiment, the WC of the molding die was examined by the parallel grinding method using the resin bonded diamond wheel with a grain size of #3000. A form accuracy of 0.16${\mu}m$ P-V and a surface roughness of 0.0067${\mu}m$ Ra have been resulted.

Research on Ultra-precision Grinding Work of Silicon Carbide (실리콘 카바이드의 초정밀 연삭 가공에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.58-63
    • /
    • 2009
  • Silicon carbide (SiC) has been used for many engineering applications because of their high strength at high temperatures and high resistances to chemical degradation. SiC is very useful especially for a glass lens mold whose components demanded to the machining with good surface finish and low surface damage. The performance and reliability of optical components are strongly influenced by the surface damage of SiC during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified SiC glass lens mold. Usually the major form of damage in grinding of SiC is a crack occurs at surface and subsurface. The energy introduced in the layers close to the surface leads to the formation of these cracks. The experimental studies have been carried out to get optimum conditions for grinding of silicon carbide. To get the required qualified surface finish in grinding of SiC, the selection of type of the wheel is also important. Grinding processes of sintered SiC work-pieces is carried out with varying wheel type, depth of cut and feed using diamond wheel. The machining result of the surface roughness and the number of flaws, have been analyzed by use of surface profilers and SEM.

Study on Ultra-precision Grinding of EL-Max Material for Hot Press Molding (핫 프레스 성형용 EL-Max 소재 초정밀 연삭 가공에 관한 연구)

  • Park, Soon Sub;Ko, Myeong Jin;Kim, Geon Hee;Won, Jong Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1267-1271
    • /
    • 2012
  • Demand for optical glass device used for lighting could increase rapidly because of LED lighting market growth. The optical glass devices that have been formed by hot press molding process the desired optical performance without being subjected to mechanical processing such as curve generation or grinding. EL-Max material has been used for many engineering applications because of their high wear resistance, high compressive strength, corrosion resistant and very good dimensional stability. EL-Max is very useful for a glass lens mold especially at high temperature and pressure. The performance and reliability of optical components are strongly influenced by the surface damage of EL-Max during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified EL-Max glass lens mold. To get the required qualified surface of EL-Max, the selection of type of the diamond wheel is also important. In this paper, we report best grinding conditions of ultra-precision grinding machining. The grinding machining results of the form accuracy and surface roughness have been analyzed by using Form Talysurf and NanoScan.