• Title/Summary/Keyword: 순환 베드시스템

Search Result 9, Processing Time 0.025 seconds

Water-circulated Bed Cultivation of Water Wasabi I. Growth Change of Water Wasabi in Different Conditions of Water-circulated Bed (물 고추냉이 순환식 베드 재배 연구 I. 베드조건의 차이에 따른 물 고추냉이의 생장량 차이)

  • Kim, Yeon Bok;Lee, Hee Jong;Jeong, Ho Won;Sim, Jae Do;Park, Cheol Ho;Jang, Kwang Jin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.100-100
    • /
    • 2018
  • 물 고추냉이는 십자화과의 숙근성 다년생 초본식물로서 일본과 대만 등에서 재배되며 세계 여러 나라에서 식품, 가공원료, 향신료, 의약소재 등으로 이용되고 있다. 우리나라에서는 철원과 무주 등에서 재배되고 있으나 재배환경 및 기술의 한계로 규모와 생산량은 매우 저조한 실정이다. 따라서 본 연구는 물 고추냉이 순환 베드시스템 개발을 위한 기초연구로 수행되었다. 마사토의 높이와 고랑의 유무에 따라 3개 베드 (A-마사토 높이 4.0cm, 고랑 있음, B-마사토 높이 5.5cm, 고랑 있음, C-마사토 높이 7.0cm, 고랑 없음)로 시험하였다. 물 고추냉이의 생장량과 식물체 내의 양분 분석(질소, 인산, 칼륨)을 분석하였다. 그 결과 베드 높이가 가장 낮고(4cm) 고랑이 있는 베드에서 생장량이 가장 우수하였고 마사토 높이가 가장 높은(7cm) 처리구보다 생장량이 2배 이상 증가하였다. 전체적으로 엽장보다 엽폭이 길었고 심장형 잎의 특성을 그대로 나타내었다. 식물체 내의 양분 분석 결과 처리구 별로 질소, 인산, 칼륨의 함량 차이가 크게 나타났다. A 베드에서 질소 4,150, 인산 500, 칼륨 1,500ppm 에 비하여 C 베드는 질소 730, 인산 120, 칼륨 700ppm 정도로 낮았다. 대조구의 동일 지역, 동일 기간의 계류지 하우스재배(데이터 미발표)에 비해 순환식 베드 재배가 우수하였고, 특히 A 베드에서 가장 우수하여 절수, 2단 재배 등의 예상되는 효과를 감안할 때 물 고추냉이 순환식 베드 재배의 가능성이 충분하다고 판단된다.

  • PDF

Field Applications of Non-powered Downward Water Circulation System to Improve Reservoir Water Quality (저수지 수질개선을 위한 무동력 하향류 수류순환시스템의 현장적용성)

  • Jang, YeoJu;Lim, HyunMan;Jung, JinHong;Park, JaeRho;Kim, WeonJae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.109-119
    • /
    • 2019
  • Eutrophication has occurred due to the inflow of various water pollutants in many Korean reservoirs with low depth, and algal blooms of surface layer and low oxygenation of deep layer have repeated every year. There are several existing technologies to alleviate the stratification of reservoirs, but it is difficult to apply them in field sites due to the necessity of electric power and low economic efficiency. In this study, a non-powered water circulation system using natural energy of wind and water flow has been developed, and two test-beds constructed in the reservoirs with different conditions and examined its field applicability. Through computational fluid dynamics (CFD) simulation, it has been shown that the water circulation system could induce the downward flow to mitigate the stratification between surface and deep layers, and its influence radius could reach about 30 m. As a result of long-term monitoring of the test-beds, various water quality improvement effects have been observed such as moderation of DO fluctuation by water circulation, reduction of DO supersaturation and prevention of excessive pH rising. In order to improve the applicability of the water circulation system, it is considered necessary to review countermeasures against flood and depth conditions of each reservoir.

Development of a cellular automata-based water cycle and inundation analysis technology (셀룰러 오토마타 기반 물순환 및 침수 해석 기반 기술 개발)

  • Choi, Hyeon Jin;Noh, Seong Jin;Lee, Eun Hyung;Kim, Sang Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.436-436
    • /
    • 2022
  • 셀룰러 오토마타(Cellular Automata; CA)는 격자(cell)에 대해 사전 정의된 규칙을 바탕으로 이웃 격자 간 상호작용을 해석하여 복잡한 동력학적 현상을 효과적으로 재현할 수 있는 이산형(discrete) 모의 기법이다. CA 기법은 격자 구조에 수치표고 자료 및 토양수분 정보 등을 직접 매칭 후 상호관계를 해석하기 때문에 공간정보를 최대한 활용하여 불균질성을 나타내는 것이 가능하다. 따라서, 도시 유출해석에 있어서 높은 정확도와 빠른 계산속도를 기대할 수 있다. 본 연구에서는 CA 기반 고해상도 물순환·침수 연계 해석 framework 개발 방향 및 CA 기반 prototype 모형의 사면유출 적용 사례를 소개한다. 개발 중인 CA 모형에서는 격자별 침수 깊이, 침투, 토양수분 저류, 지표 유출 등의 물순환 요소를 모의할 수 있다. 기존의 집중형(lumped) 모형은 지표-지표하 유출에 대한 routing algorithm이 없고 각 셀의 물수지 모형 내 파라미터가 많은 단점이 있다. 따라서 개발 중인 CA 모형에서는 cell state 내 fast reservoir와 slow reservoir를 통해 지표-지표하 상태를 구현하고 단순화된 물수지 모형 및 흐름 방향 알고리즘을 적용함으로써 실제 현장에서 발생하는 다중 피크 형태의 지표 유출을 모사한다. 최적의 지표수 흐름 방향 알고리즘 선정을 위해 3개의 다중 흐름 방향 알고리즘(D4, D8, 4+4N)을 정량적으로 비교·분석한다. 이번 발표에서는 CA 모형을 소규모 산지 사면과 도심지 등 다양한 규모의 테스트베드에 적용하여 모형의 장단점을 평가한다.

  • PDF

Effects of Several Cooling Methods and Cool Water Hose Bed Culture on Growth and Microclimate in Summer Season Cultivation of Narrowhead Goldenray 'Ligularia stenocephaia' (곤달비 여름재배 시 냉각방법과 냉수호스베드재배가 생육 및 미기상에 미치는 영향)

  • Kim, Ki-Deog;Lee, Eung-Ho;Kim, Won-Bae;Lee, Jun-Gu;Yoo, Dong-Lim;Kwon, Young-Seok;Lee, Jong-Nam;Jang, Suk-Woo;Hong, Soon-Choon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2011
  • This study was carried out to investigate the effects of several cooling methods such as water hose cooling, mist, fog and control on growth and microclimate, and to develop a simple nutriculture bed for production of fresh leaves of narrowhead goldenaray 'Ligularia stenocephala'. When the root-zone was cooled with 240 L/hr flow rate of $13^{\circ}C$ ground water using water hose, the temperature was lowered approximately by 2 to $3^{\circ}C$ than that of control. The growth of narrowhead goldenaray were favorable in the water hose cooling compared with the other cooling methods. Nutrient culture system having part cooling effect around plant canopy was developed. The system was composed of 15 cm diameter of water hose on side wall of beds, cooling hose, and expanded rice hull media as organic substrate. When cool water which the temperature changed in the range of 14 to $22^{\circ}C$ diurnally with 240 L/hr of flow rate through water hose, the air temperature around canopy and root-zone temperature were dropped by $0.5^{\circ}C$ and $3^{\circ}C$ compared with that of conventional styrofoam bed, respectively. These results showed that newly devised bed system using water hose was simple and economical for the production of high quality narrowhead goldenaray leaves. This system might be practically used both at summer and winter season for the cultivation of narrow head goldenaray by part cooling or heating around root-zone and plant canopy.

Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model (순환신경망을 이용한 자기장 기반 실내측위시스템)

  • Bae, Han Jun;Choi, Lynn;Park, Byung Joon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.57-65
    • /
    • 2018
  • Conventional RF signal-based indoor localization techniques such as BLE or Wi-Fi based fingerprinting method show considerable localization errors even in small-scale indoor environments due to unstable received signal strength(RSS) of RF signals. Therefore, it is difficult to apply the existing RF-based fingerprinting techniques to large-scale indoor environments such as airports and department stores. In this paper, instead of RF signal we use the geomagnetic sensor signal for indoor localization, whose signal strength is more stable than RF RSS. Although similar geomagnetic field values exist in indoor space, an object movement would experience a unique sequence of the geomagnetic field signals as the movement continues. We use a deep neural network model called the recurrent neural network (RNN), which is effective in recognizing time-varying sequences of sensor data, to track the user's location and movement path. To evaluate the performance of the proposed geomagnetic field based indoor positioning system (IPS), we constructed a magnetic field map for a campus testbed of about $94m{\times}26$ dimension and trained RNN using various potential movement paths and their location data extracted from the magnetic field map. By adjusting various hyperparameters, we could achieve an average localization error of 1.20 meters in the testbed.

Selection and Treatment Effect of Plant Growth Retardants on Potted Spathiphyllum Grown in a Recirculating Subirrigation System (순환식 저면관수 시스템을 이용한 스파티필럼의 생장조절제 선발과 처리효과)

  • Won, Eun Jeong;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.19 no.2
    • /
    • pp.81-88
    • /
    • 2011
  • Effect of concentrations of different plant growth retardants (PGRs) supplied to a recirculated nutrient solution in an ebb and flow system on the growth and development of potted Spathiphyllum 'Top-Pin' and 'Mini' was examined. Plants were planted in 10 cm diameter plastic pots filled with a mixture of peat moss and perlite (1 : 1, v/v) on 30 June 2005 and grown until 23 Sep. 2005. In a closed ebb and flow system, 50, 200, 350, $500mg{\cdot}L^{-1}$ daminozide (B-9), 10, 40, 70, $100mg{\cdot}L^{-1}$ paclobutrazol (Boundy), 5, 15, 25, $35mg{\cdot}L^{-1}$ ethephon (Florel), and 1, 4, 7, $10mg{\cdot}L^{-1}$ uniconazole (Sumagic) were supplemented to a nutrient solution at the initiation of experiment. On every irrigation, the nutrient solution containing PGRs was supplied at a 2 cm depth and kept for 15-20 minutes. The surplus nutrient solution was drained back into the tank for next irrigations. Paclobutrazol gave the most pronounced effect in inhibition of stretchiness. The greatest reduction of leaf length, fresh and dry weights of shoot, and elevated chlorophyll content were recorded in Spathiphyllum, with increasing paclobutrazol concentration. Daminozide concentration greater than $200mg{\cdot}L^{-1}$ resulted in minor stunting. The lowest concentration ($1mg{\cdot}L^{-1}$) of uniconazole showed greater leaf length, leaf width, and leaf petiole length than the control ($0mg{\cdot}L^{-1}$). Uniconazole concentration greater than $1mg{\cdot}L^{-1}$ resulted in similar plant growth as the plant in the control ($0mg{\cdot}L^{-1}$). High concentration ($35mg{\cdot}L^{-1}$) of ethephon resulted in the shortest leaf length, and the greatest chlorophyll content. Inhibition of stretchiness was observed even in the lowest concentration treatments. Among the PGRs, paclobutrazol was most effective in suppressing plant stretchiness. In both cultivars, ethephon and paclobutrazol, but not daminozide and uniconazole, significantly inhibited stretchiness. The results suggested that plant growth retardants (ethephon or paclobutrazol) selected in this study may be used as the most effective agents for inhibition of stretchiness in Spathiphyllum.

Effect of Pinching Time and Plant Growth Retardants on Growth Control of Ardisia pusilla in an Ebb and Flow System (Ebb and Flow 시스템에서 적심시기와 생장조절제 처리에 의한 산호수의 생장조절)

  • Won, Eun-Jeong;Park, Ji-Eun;Park, Yoo-Gyeong;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • This study was conducted on the effect of plant growth retardants (PGRs) on growth of potted Ardisia pusilla and Ardisia pusilla var. variegata grown for a short term in an ebb and flow system. Plants were planted in 10 cm plastic pots, containing a mixture of peat moss and perlite (1 : 1, v/v) on 30 June 2005 and were grown until 23 Sep. 2005. The PGRs used were 50, 200, 350, 500 $mg{\cdot}L^{-1}$ daminozide (B- 9), 10, 40, 70, 100 $mg{\cdot}L^{-1}$ paclobutrazol (Boundy), and 5, 15, 25, 35 $mg{\cdot}L^{-1}$ ethephon (Florel). On every irrigation, the nutrient solution containing PGRs was supplied at a 2 cm depth and was kept for 15~20 minutes. The surplus nutrient solution was drained back into the tank for next irrigations. In both cultivars, paclobutrazol gave the most pronounced effect in inhibition of stretchiness. Ardisia pusilla, which was pinched just before initiation of paclobutrazol treatment, resulted in the greatest inhibition of shoot elongation. Daminozide treatments above 200 $mg{\cdot}L^{-1}$ also gave reduction of shoot length. However, ethephon treatments gave no dwarfing effect in Ardisia pusilla. Inhibition of stretchiness was observed even in the lowest concentration treatments. Among the PGRs, paclobutrazol was the most effective in suppressing plant stretchiness.

Design and Implementation of Wireless Power Transfer System for a Personal Rapid Transit (PRT) Vehicle (PRT 차량의 무선급전 시스템 설계 및 구현)

  • Kang, Seok-Won;Jeong, Rag-Gyo;Byun, Yeun-Sub;Um, Ju-Hwan;Kim, Baek-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.289-298
    • /
    • 2014
  • Recently, the traditional paradigm in railroad technology is changing as more efficient and cost-effective electric vehicle (EV) technologies have emerged. The original concept of PRT (Personal Rapid Transit) proposed in the past has come to be regarded as unrealistic, but its feasibility is improving through the utilization of an EV platform. In particular, battery-powered vehicles pose difficult technical challenges in attempts to achieve reliable and efficient operation. However, based on the inductive power transfer (IPT) technology, the fast charging of supercapacitors with high energy density can contribute to overcoming this technical challenge and promote the transition to electric-powered ground transportation by improving the appearance of cities. This study discusses the development process of a power supply system for PRT, including concept design, numerical analysis, and device manufacturing, along with performance predictions and evaluations. In terms of results, the system was found to meet the performance requirements for power supply modules on a test-bed.

Development of Recirculating Wick Hydroponic Techniques for Safe Seed Tuber Multiplication of Potatoe (심지 양액재배법에 의한 상위급 씨감자의 안정적 대량생산)

  • Kang Bong Kyoon;Kim Chan Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.447-451
    • /
    • 2004
  • This study was conducted to establish the proper techniques of the recirculating wick hydroponics for safe seed tuber proliferation of potatoes (Solanum tuberosum L. CV. Dejima). To achieve these, several intact tubers (5, 10 and 20 g) and cut seed-pieces (two or four) were treated in wick hydroponic system beds. A polystyrene box (31cm in width, 20cm in height, 51cm in length, and $0.031m^3$ in volume) was placed on a styrofoam hox. Eight wicks $(width\;1.5cm\;{\times}\;length\;40cm) $ were put into each polystyrene hox and the boxes were filled with perlite + peatmoss (1 : 2, v/v) medium. Top fresh weight per plant increased with increasing the tuber size from 10 to 30g/tuber. As the tuber size increases from 10 to 30 g/tuher in case of uncut tuber, the marketable tuber (>5g) production per plant increased from 83.8 to 141.8 g/plant and the marketable tuber (>5g) production per plant of cut tuber was slightly higher than that of uncut treatment. Total tuber yield ranged from 4.16 to $6.56kg/m^2$ and the percentage of seed tubers was greater than $97\%$ for all treatments. These results indicate that seed tuber should be cut to produce large tuber $(\geq10g)$ in the recirculating wick hydroponic system.