• 제목/요약/키워드: 순환형 퍼지신경망

검색결과 4건 처리시간 0.021초

강인한 마찰 상태 관측기와 순환형 퍼지신경망 관측기를 이용한 비선형 마찰제어 (Nonlinear Friction Control Using the Robust Friction State Observer and Recurrent Fuzzy Neural Network Estimator)

  • 한성익
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.90-102
    • /
    • 2009
  • In this paper, a tracking control problem for a mechanical servo system with nonlinear dynamic friction is treated. The nonlinear friction model contains directly immeasurable friction state and the uncertainty caused by incomplete modeling and variations of its parameter. In order to provide the efficient solution to these control problems, we propose a hybrid control scheme, which consists of a robust friction state observer, a RFNN estimator and an approximation error estimator with sliding mode control. A sliding mode controller and a robust friction state observer is firstly designed to estimate the unknown infernal state of the LuGre friction model. Next, a RFNN estimator is introduced to approximate the unknown lumped friction uncertainty. Finally, an adaptive approximation error estimator is designed to compensate the approximation error of the RFNN estimator. Some simulations and experiments on the mechanical servo system composed of ball-screw and DC servo motor are presented. Results demonstrate the remarkable performance of the proposed control scheme.

마찰변수 관측기와 적응순환형 퍼지신경망을 이용한 PMLSM의 강인한 위치제어 (Robust Position Control for PMLSM Using Friction Parameter Observer and Adaptive Recurrent Fuzzy Neural Network)

  • 한성익;여대언;김새한;이권순
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.241-250
    • /
    • 2010
  • A recurrent adaptive model-free intelligent control with a friction estimation law is proposed to enhance the positioning performance of the mover in PMLSM system. For the PMLSM with nonlinear friction and uncertainty, an adaptive recurrent fuzzy neural network(ARFNN) and compensated control law in $H_{\infty}$ performance criterion are designed to mimic a perfect control law and compensate the approximated error between ideal controller and ARFNN. Combined with friction observer to estimate nonlinear friction parameters of the LuGre model, on-line adaptive laws of the controller and observer are derived based on the Lyapunov stability criterion. To analyze the effectiveness our control scheme, some simulations for the PMLSM with nonlinear friction and uncertainty were executed.

강인한 마찰상태관측기와 RFNN을 이용한 백스테핑 제어기반 정밀 위치제어 (Backstepping Control-Based Precise Positioning Control Using Robust Friction State Observer and RFNN)

  • 여대연;한성익;이권순
    • 한국생산제조학회지
    • /
    • 제19권3호
    • /
    • pp.394-401
    • /
    • 2010
  • In this article, we investigate a robust friction compensation scheme for the purpose of accomplishing precision positioning performance a servo mechanical system with nonlinear dynamic friction. To estimate the friction state and tackle robustness problem for uncertainty, a RFNN and reconstructed error compensator as well as a robust friction state observer are developed. The asymptotic stability of the series of friction compensation methodologies are verified from the Lyapunov's stability theory. Some simulations and experiments on a servo mechanical system were carried out to evaluate the effectiveness of the proposed control scheme.