• Title/Summary/Keyword: 순환교대파형

Search Result 2, Processing Time 0.019 seconds

Cyclic Alternating Pattern : Implications for Insomnia (불면증에서 순환교대파형의 의미)

  • Cyn, Jae-Gong
    • Sleep Medicine and Psychophysiology
    • /
    • v.17 no.2
    • /
    • pp.75-84
    • /
    • 2010
  • The cyclic alternating pattern (CAP) is a periodic EEG activity in NREM sleep, characterized by sequences of transient electrocortical events that are distinct from background EEG activities. A CAP cycle consists of two periodic EEG features, phase A and subsequent phase B whose durations are 2-60 s. At least two consecutive CAP cycles are required to define a CAP sequence. The CAP phase A is a phasic EEG event, such as delta bursts, vertex sharp transients, K-complex sequences, polyphasic bursts, K-alpha, intermittent alpha, and arousals. Phase B is repetitive periods of background EEG activity. The absence of CAP more than 60 seconds or an isolated phase A is classified as non-CAP. Phase A activities can be classified into three subtypes (A1, A2, and A3), based on the amounts of high-voltage slow waves (EEG synchrony) and low-amplitude fast rhythms (EEG desynchrony). CAP rate, the percentage of CAP durations in NREM sleep is considered to be a physiologic marker of the NREM sleep instability. In insomnia, the frequent discrepancy between self-reports and polysomnographic findings could be attributed to subtle abnormalities in the sleep tracing, which are overlooked by the conventional scoring methods. The conventional scoring scheme has superiority in analysis of macrostructure of sleep but shows limited power in finding arousals and transient EEG events that are major component of microstructure of sleep. But, it has recently been found that a significant correlation exists between CAP rate and the subjective estimates of the sleep quality in insomniacs and sleep-improving treatments often reduce the amount of CAP. Thus, the extension of conventional sleep measures with the new CAP variables, which appear to be the more sensitive to sleep disturbance, may improve our knowledge on the diagnosis and management of insomnia.

  • PDF

The Waveform and Spectrum analysis of Tursiops truncatus (Bottlenose Dolphin) Sonar Signals on the Show at the Aquarium (쇼 학습시 병코돌고래 명음의 주파수 스펙트럼 분석)

  • 윤분도;신형일;이장욱;황두진;박태건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.117-125
    • /
    • 2000
  • The waveform and spectrum analysis of Tursiops truncatus(bottlenose dolphin) sonar signals were carried out on the basis of data collected during the dolphin show at the aquarium of Cheju Pacificland from October 1998 to February 1999. When greeting to audience, the pulse width, peak frequency and spectrum level from the five dolphins'sonar signals were 3.0ms, 4.54kHz and 125.6dB, respectively. At the time of warm-up just before the show, their figures were 5.0㎳, 5.24kHz and 127.0dB, respectively. During the performance of dolphins, with singing, peak frequency ranged 3.28∼5.78kHz and spectrum level ranged 137.0∼142.0dB. With playing ring, pulse width, peak frequency and spectrum level were 7.0㎳, 2.54kHz and 135.9dB, and when playing the ball, the values were 9.0㎳, 2.78kHz and 135.2dB, respectively. The values determined from the five dolphins during jump-up out of water were : pulse width 2.0㎳, peak frequency 4.50kHz and spectrum level 126.8dB. When they responded to trainer's instructions, the values were 2.25㎳, 248kHz and 148.7dB, respectively, and greeting to audience, the peak frequency and spectrum level were 5.84kHz and 122.5dB. During swimming under water, peak frequency and spectrum level were determined to be 10.10kHz and 126.8dB. It was found that there exited close consistencies in pulse width, frequency distribution and spectrum level between whistle sounds and dolphin's sonar signals. Accordingly, the dolphins can be easily trained by using whistle sound based on the results obtained from the waveform and spectrum of the dolphin's sonar signals.

  • PDF