Sequential pattern mining is an important data mining task with broad applications. However, conventional methods may meet inherent difficulties in mining databases with long sequences and noise. They may generate a huge number of short and trivial patterns but fail to find interesting patterns shared by many sequences. In this paper, to overcome these problems, we propose the theme of approximate sequential pattern mining roughly defined as identifying patterns approximately shared by many sequences. The proposed method works in two steps: one is to cluster target sequences by their similarities and the other is to find consensus patterns that ire similar to the sequences in each cluster directly through multiple alignment. For this purpose, a novel structure called weighted sequence is presented to compress the alignment result, and the longest consensus pattern that represents each cluster is generated from its weighted sequence. Finally, the effectiveness of the proposed method is verified by a set of experiments.
Proceedings of the Korean Information Science Society Conference
/
2004.10a
/
pp.214-216
/
2004
순차패턴 마이닝은 데이터들 속에서 어떤 순차 관계가 들어 있는 패턴을 찾는 것이다. 순차 패턴은 다양한 분야에서 중요하게 쓰인다. 예를 들어, 소비자가 구입한 물품들 간의 순차적인 관계성은 다음에 구입할 물건을 예측하는데 쓰일 수 있다. 또한 방문 웹 페이지의 순차 패턴은 사용자가 방문하고자 하는 다음 페이지를 예측하는데 중요할 수 있다. 본 논문에서는 다차원 순차패턴을 마이닝하는 새로운 효율적인 알고리즘의 구현에 대해 설명한다 다차원 순차 패턴 마이닝은 속성-값(attribute-value) 기술을 포함하는 순차 패턴의 연관 규칙을 찾는 것이다. 다음의 두 가지의 현존하는 효율적 알고리즘을 융합하였다. 순차패턴 마이닝을 위한 PrefixSpan 알고리즘과 비 순차패턴 마이닝을 위한 StarCubing 알고리즘. 새로운 알고리즘은 다차원 데이터를 마이닝 하는 StarCubing알고리즘의 효율성을 이용하므로 다차원 순차 데이터를 마이닝 하는데 효율적일 것이다. 실험결과는 제안한 알고리즘이 특히 작은 최소지지도와 작은 cardinality에서 Seq-Dim과 Dim-Seq 같은 현존하는 알고리즘보다 나은 성능임을 보여준다.
순차패턴 마이닝에서 관심도가 큰 순차패턴을 얻기 위해서 구성요소의 단순 발생 순서뿐만 아니라 구성요소의 가중치를 추가로 고려할 수 있다. 본 논문에서는 순차패턴 마이닝에서 가중치 순차패턴을 탐색하기 위한 가중치 계산 기법으로 발생 간격에 기반한 순차패턴 가중치 부여 기법을 제안한다. 발생 간격 기반 가중치는 사전에 정의된 별도의 가중치 정보를 필요로 하지 않으며 순차정보를 구성하는 구성요소들의 발생 간격으로부터 구해진다. 즉, 순차패턴의 가중치를 구하는데 있어서 구성요소의 발생 순서와 더불어 이들의 발생 간격을 고려하며, 따라서 보다 관심도가 크고 유용한 순차패턴을 얻도록 지원한다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.178-180
/
2003
본 논문은 순차 패턴을 갱신하는 알고리즘을 제안한다. 갱신된 데이터베이스에서 새로운 순차 패턴을 찾는 비용을 줄이기 위해 갱신 전 데이터베이스에서 발견한 순차 패턴에 대한 정보와 추가되는 데이터베이스의 정보만으로 새로운 순차 패턴의 후보를 줄이는 방법으로, 갱신된 전체 데이터베이스를 대상으로 순차 패턴 마이닝 알고리즘을 재실행하는 방법에 비해 후보 셋이 줄어들고 이로 인해 연산 비용을 줄일 수 있는 장점이 있다.
순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 찾아내는 기법이다. 순차 패턴 탐사 분야 중에 동적 가중치 순차 패턴 탐사는 가중치가 시간에 따라 변화하는 컴퓨팅 환경에 적용하는 마이닝 기법으로 동적인 중요도 변화를 마이닝에 적용하여 다양한 환경에서 활용 가능하다. 이 논문에서는 다양한 순차 데이터에서 동적 가중치를 적용하여 순차 패턴을 탐사하는 새로운 시퀀스 데이터 마이닝 기법에 대하여 제안한다. 제안하는 기법은 시간 순서에 의한 상대적인 동적 가중치를 사용하여 탐색해야 하는 후보 패턴을 줄여줄 수 있어 빈발한 시퀀스 패턴을 빠르게 찾을 수 있다. 이 기법을 사용하면 기존 가중치를 적용하는 방식보다 메모리 사용과 처리 시간을 줄여줘 매우 효율적이다.
순차 패턴 마이닝은 대량의 시퀀스 데이터베이스에서 빈발 서브 시퀀스를 찾는 기법이다. 지금까지 많은 순차 패턴 마이닝에 관한 연구들이 순차 패턴을 효율적으로 찾기 위하여 제안되었다. 그러나 제안된 방법들은 응용에 적용할 수 있도록 체계적으로 분류되어 있지 않다. 따라서 이 논문에서는 알고리즘에 대한 연구들을 분류하고 이들 중 대표적인 알고리즘들을 선정하여 각각에 대해 분석하였다. 그리고 각 응용 도메인에 적용한 연구들과 기술적인 문제를 해결하는 연구들에 대해 정리하였다. 마지막으로 성능 향상을 위한 기법이나 자로 구조에 대해 언급하고 향후 순차 패턴 마이닝의 연구 방향을 제시하였다. 이 연구는 실제 응용에 적합한 순차 패턴 마이닝 알고리즘의 선택과 향후 새로운 순차 패턴 알고리즘 연구의 기반을 제공할 것이다.
Journal of the Korea Society of Computer and Information
/
v.14
no.5
/
pp.29-36
/
2009
Sequential pattern mining, which discovers frequent subsequences as patterns in a sequence database, is an important data mining problem with broad applications. Since a sequential pattern in DNA sequences can be a motif, we studied to find sequential patterns in DNA sequences. Most previously proposed mining algorithms follow the exact matching with a sequential pattern definition. They are not able to work in noisy environments and inaccurate data in practice. Theses problems occurs frequently in DNA sequences which is a biological data. We investigated approximate matching method to deal with those cases. Our idea is based on the observation that all occurrences of a frequent pattern can be classified into groups, which we call approximated pattern. The existing PrefixSpan algorithm can successfully find sequential patterns in a long sequence. We improved the PrefixSpan algorithm to find approximate sequential patterns. The experimental results showed that the number of repeats from the proposed method was 5 times more than that of PrefixSpan when the pattern length is 4.
KIPS Transactions on Software and Data Engineering
/
v.2
no.2
/
pp.137-144
/
2013
A sequential pattern mining is finding out frequent patterns from the data set in time order. In this field, a dynamic weighted sequential pattern mining is applied to a computing environment that changes depending on the time and it can be utilized in a variety of environments applying changes of dynamic weight. In this paper, we propose a new sequence data mining method to explore the stream data by applying the dynamic weight. This method reduces the candidate patterns that must be navigated by using the dynamic weight according to the relative time sequence, and it can find out frequent sequence patterns quickly as the data input and output using a hash structure. Using this method reduces the memory usage and processing time more than applying the existing methods. We show the importance of dynamic weighted mining through the comparison of different weighting sequential pattern mining techniques.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.13-15
/
2004
순차 패턴을 찾는 것은 데이타 마이닝 응용분야에서 중요한 문제이다. 기존의 순차 패턴 마이닝 알고리즘들은 아이템으로만 이루어진 순차 패턴만을 취급하였으나 Apriori-QSP에서는 새롭게 퀀터티 정보에 대한 처리의 개념을 도입하였다. 전채 순차 패턴을 찾는 알고리즘들은 너비 우선 탐색과 깊이 우선 탐색 기법으로 분류할 수 있는데, 이러한 분류에서 Apriori-QSP알고리즘은 너비 우선 탐색 기법으로 분류할 수 있다. 본 논문에서는 퀀터티 정보를 처리하는 깊이 우선 탐색 기법을 제안하였다. Apriori-QSP에서 제안되었던 후보패턴 생성에 대한 필터링파 샘플링 기법을 깊이 우선 탐색의 탐색 기법으로 적용하였으며, 다양한 실험 결과들이 깊이 우선 탐색에서도 이러한 기법이 효율적임을 보여 주고 있다. 또한 길이가 긴 순차 패턴 마이닝의 경우 너비우선 탐색에 비해 향상된 성능을 보임을 확인하였다.
Sequential pattern mining that determines frequent patterns appearing in a given set of sequences is an important data mining problem with broad applications. For example, sequential pattern mining can find the web access patterns, customer's purchase patterns and DNA sequences related with specific disease. In this paper, we develop the sequential pattern mining algorithms using MapReduce framework. Our algorithms distribute input data to several machines and find frequent sequential patterns in parallel. With synthetic data sets, we did a comprehensive performance study with varying various parameters. Our experimental results show that linear speed up can be achieved through our algorithms with increasing the number of used machines.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.