• 제목/요약/키워드: 순차 패턴

검색결과 309건 처리시간 0.032초

대용량 순차 데이터베이스에서 근사 순차패턴 탐색 (Mining Approximate Sequential Patterns in a Large Sequence Database)

  • 금혜정;장중혁
    • 정보처리학회논문지D
    • /
    • 제13D권2호
    • /
    • pp.199-206
    • /
    • 2006
  • 순차패턴 탐색은 다양한 응용 분야에서 매우 중요한 데이터 마이닝 작업으로 간주된다. 그러나 기존의 순차패턴 탐색 방법들은 길이가 긴 순차패턴이나 노이즈 정보를 다수 포함한 데이터베이스에 대한 마이닝에서는 한계가 있다. 해당 방법들은 매우 짧고 사소한 패턴들은 탐색하지만 다수의 순차 정보들에서 공유되는 중요 패턴들을 분석하는데 어려움을 겪는다. 본 논문에서는 이러한 문제를 해결하기 위한 방법으로 대용량 데이터베이스에 대한 근사 순차패턴 탐색 방법을 제안한다. 근사 순차패턴은 다수의 순차 정보들에서 근사적으로 공유되는 순차패턴을 의미한다. 제안된 방법은 두 과정으로 구분된다. 하나는 유사도에 따라 분석 대상 순차 정보들을 몇 개의 군집으로 나누는 과정이며, 다른 하나는 다중 정렬 방식을 적용하여 각 군집으로부터 대표 패턴을 찾는 과정이다. 이를 위해서 다수의 순차 정보들을 하나로 표현할 수 있는 가중치 순차패턴을 제시하며, 다수의 순차 정보들은 가중치 순차패턴 형태로 통합된다. 이렇게 통합된 정보를 가진 각 가중치 순차패턴을 이용하여 여러 순차 정보와 근사한 하나의 대표 패턴을 생성한다. 끝으로, 다양한 실험을 통해서 제안된 방법의 유용성을 검증한다.

다차원 순차패턴 마이닝을 위한 효율적 알고리즘 (An Efficient Algorithm for Multi-dimensional Sequential Pattern Mining)

  • 이순신;김은주;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.214-216
    • /
    • 2004
  • 순차패턴 마이닝은 데이터들 속에서 어떤 순차 관계가 들어 있는 패턴을 찾는 것이다. 순차 패턴은 다양한 분야에서 중요하게 쓰인다. 예를 들어, 소비자가 구입한 물품들 간의 순차적인 관계성은 다음에 구입할 물건을 예측하는데 쓰일 수 있다. 또한 방문 웹 페이지의 순차 패턴은 사용자가 방문하고자 하는 다음 페이지를 예측하는데 중요할 수 있다. 본 논문에서는 다차원 순차패턴을 마이닝하는 새로운 효율적인 알고리즘의 구현에 대해 설명한다 다차원 순차 패턴 마이닝은 속성-값(attribute-value) 기술을 포함하는 순차 패턴의 연관 규칙을 찾는 것이다. 다음의 두 가지의 현존하는 효율적 알고리즘을 융합하였다. 순차패턴 마이닝을 위한 PrefixSpan 알고리즘과 비 순차패턴 마이닝을 위한 StarCubing 알고리즘. 새로운 알고리즘은 다차원 데이터를 마이닝 하는 StarCubing알고리즘의 효율성을 이용하므로 다차원 순차 데이터를 마이닝 하는데 효율적일 것이다. 실험결과는 제안한 알고리즘이 특히 작은 최소지지도와 작은 cardinality에서 Seq-Dim과 Dim-Seq 같은 현존하는 알고리즘보다 나은 성능임을 보여준다.

  • PDF

순차패턴 마이닝에서 발생 간격 기반 가중치 부여 기법 (A Gap-based Weighting Approach in Mining Sequential Patterns)

  • 장중혁;신무종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.300-303
    • /
    • 2010
  • 순차패턴 마이닝에서 관심도가 큰 순차패턴을 얻기 위해서 구성요소의 단순 발생 순서뿐만 아니라 구성요소의 가중치를 추가로 고려할 수 있다. 본 논문에서는 순차패턴 마이닝에서 가중치 순차패턴을 탐색하기 위한 가중치 계산 기법으로 발생 간격에 기반한 순차패턴 가중치 부여 기법을 제안한다. 발생 간격 기반 가중치는 사전에 정의된 별도의 가중치 정보를 필요로 하지 않으며 순차정보를 구성하는 구성요소들의 발생 간격으로부터 구해진다. 즉, 순차패턴의 가중치를 구하는데 있어서 구성요소의 발생 순서와 더불어 이들의 발생 간격을 고려하며, 따라서 보다 관심도가 크고 유용한 순차패턴을 얻도록 지원한다.

효율적인 순차 패턴 갱신 알고리즘 (Efficient Update Algorithm of Sequential Pattern)

  • 김학자;김형근;황환규
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.178-180
    • /
    • 2003
  • 본 논문은 순차 패턴을 갱신하는 알고리즘을 제안한다. 갱신된 데이터베이스에서 새로운 순차 패턴을 찾는 비용을 줄이기 위해 갱신 전 데이터베이스에서 발견한 순차 패턴에 대한 정보와 추가되는 데이터베이스의 정보만으로 새로운 순차 패턴의 후보를 줄이는 방법으로, 갱신된 전체 데이터베이스를 대상으로 순차 패턴 마이닝 알고리즘을 재실행하는 방법에 비해 후보 셋이 줄어들고 이로 인해 연산 비용을 줄일 수 있는 장점이 있다.

  • PDF

동적 가중치를 이용한 효율적인 순차 패턴 탐사 기법 (Efficient Mining of Dynamic Weighted Sequential Patterns)

  • 최필선;강동현;김환;김대인;황부현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1365-1368
    • /
    • 2012
  • 순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 찾아내는 기법이다. 순차 패턴 탐사 분야 중에 동적 가중치 순차 패턴 탐사는 가중치가 시간에 따라 변화하는 컴퓨팅 환경에 적용하는 마이닝 기법으로 동적인 중요도 변화를 마이닝에 적용하여 다양한 환경에서 활용 가능하다. 이 논문에서는 다양한 순차 데이터에서 동적 가중치를 적용하여 순차 패턴을 탐사하는 새로운 시퀀스 데이터 마이닝 기법에 대하여 제안한다. 제안하는 기법은 시간 순서에 의한 상대적인 동적 가중치를 사용하여 탐색해야 하는 후보 패턴을 줄여줄 수 있어 빈발한 시퀀스 패턴을 빠르게 찾을 수 있다. 이 기법을 사용하면 기존 가중치를 적용하는 방식보다 메모리 사용과 처리 시간을 줄여줘 매우 효율적이다.

순차 패턴 알고리즘의 분류 및 분석 (Classification and Analysis of Sequential Pattern Algorithms)

  • 이양우;이헌규;김룡;서성보;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (하)
    • /
    • pp.1587-1590
    • /
    • 2003
  • 순차 패턴 마이닝은 대량의 시퀀스 데이터베이스에서 빈발 서브 시퀀스를 찾는 기법이다. 지금까지 많은 순차 패턴 마이닝에 관한 연구들이 순차 패턴을 효율적으로 찾기 위하여 제안되었다. 그러나 제안된 방법들은 응용에 적용할 수 있도록 체계적으로 분류되어 있지 않다. 따라서 이 논문에서는 알고리즘에 대한 연구들을 분류하고 이들 중 대표적인 알고리즘들을 선정하여 각각에 대해 분석하였다. 그리고 각 응용 도메인에 적용한 연구들과 기술적인 문제를 해결하는 연구들에 대해 정리하였다. 마지막으로 성능 향상을 위한 기법이나 자로 구조에 대해 언급하고 향후 순차 패턴 마이닝의 연구 방향을 제시하였다. 이 연구는 실제 응용에 적합한 순차 패턴 마이닝 알고리즘의 선택과 향후 새로운 순차 패턴 알고리즘 연구의 기반을 제공할 것이다.

  • PDF

근사 알고리즘을 이용한 순차패턴 탐색 (Searching Sequential Patterns by Approximation Algorithm)

  • 산사볼트가람라흐차;황영섭
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.29-36
    • /
    • 2009
  • 서열데이터베이스에 있는 자주 발현하는 부분 서열을 패턴으로 찾아내는 순차패턴 탐색은 넓은 응용 분야를 가지는 중요한 데이터 마이닝 문제이다. DNA 서열에서 순차패턴이 모티프가 될 수 있으므로 DNA 서열에서 순차패턴을 찾는 것을 연구하였다. 대부분의 기존 마이닝 방법은 순차패턴의 정의에 따라 정확한 정합에 주력하여 노이즈가 있는 환경이나 실제 문제에서 발생하는 부정확한 데이터에 대하여 제대로 작동하지 않을 수 있다. 이러한 문제가 생물 데이터인 DNA 서열에서 자주 나타난다. 이러한 문제를 다루기 위한 근사 정합 방법을 연구하였다. 본 연구의 아이디어는 자주 발생하는 패턴을 근사 패턴이라 부르는 그룹으로 분류할 수 있다는 관찰에서 기반을 둔다. 기존의 Prefixspan 알고리즘은 주어진 긴 서열에서 순차패턴을 잘 찾을 수 있다. 본 연구는 Prefixspan 알고리즘을 개선하여 유사한 순차패턴을 찾을 수 있게 하였다. 실험 결과는 PreFixSpan보다 제안한 방법이 패턴 길이가 4일 때, 근사 순차패턴의 빈도가 5배 높아짐을 보였다.

스트림 데이터에서 동적 가중치를 이용한 순차 패턴 탐사 기법 (A Sequential Pattern Mining based on Dynamic Weight in Data Stream)

  • 최필선;김환;김대인;황부현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권2호
    • /
    • pp.137-144
    • /
    • 2013
  • 순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 탐사하는 기법이다. 순차 패턴 탐사 분야 중에 동적 가중치 순차 패턴 탐사는 가중치가 시간에 따라 변화하는 컴퓨팅 환경에 적용 가능한 탐사 기법으로 동적인 가중치 변화를 탐색 과정에 적용하여 다양한 환경에서 활용 가능하다. 이 논문에서는 다양한 순차 데이터가 들어오는 스트림 환경에서 동적 가중치를 적용하여 빈발한 이벤트들을 탐사하는 새로운 순차 패턴 탐사 기법을 제안한다. 제안하는 기법은 시간 순서에 의한 상대적인 동적 가중치를 사용하여 탐색해야 하는 후보 패턴을 줄여주고 해시 구조를 통한 데이터 입출력으로 빈발한 순차 패턴을 빠르게 탐사할 수 있다. 이 기법을 사용하면 기존 가중치를 적용하는 방식보다 메모리 사용과 처리 시간을 줄여줘 매우 효율적이다. 제안하는 기법은 다른 가중치 순차 패턴 탐사 기법과의 비교를 통해 동적 가중치 탐사 기법의 중요성을 보인다.

퀀터티가 있는 순차 패턴을 찾는 깊이 우선 탐색 알고리즘 (An Efficient Depth First Algorithm for Mining Sequential Patterns with Quantities)

  • 김철연;심규석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.13-15
    • /
    • 2004
  • 순차 패턴을 찾는 것은 데이타 마이닝 응용분야에서 중요한 문제이다. 기존의 순차 패턴 마이닝 알고리즘들은 아이템으로만 이루어진 순차 패턴만을 취급하였으나 Apriori-QSP에서는 새롭게 퀀터티 정보에 대한 처리의 개념을 도입하였다. 전채 순차 패턴을 찾는 알고리즘들은 너비 우선 탐색과 깊이 우선 탐색 기법으로 분류할 수 있는데, 이러한 분류에서 Apriori-QSP알고리즘은 너비 우선 탐색 기법으로 분류할 수 있다. 본 논문에서는 퀀터티 정보를 처리하는 깊이 우선 탐색 기법을 제안하였다. Apriori-QSP에서 제안되었던 후보패턴 생성에 대한 필터링파 샘플링 기법을 깊이 우선 탐색의 탐색 기법으로 적용하였으며, 다양한 실험 결과들이 깊이 우선 탐색에서도 이러한 기법이 효율적임을 보여 주고 있다. 또한 길이가 긴 순차 패턴 마이닝의 경우 너비우선 탐색에 비해 향상된 성능을 보임을 확인하였다.

  • PDF

맵리듀스 프레임웍 상에서 맵리듀스 함수 호출을 최적화하는 순차 패턴 마이닝 기법 (Sequential Pattern Mining with Optimization Calling MapReduce Function on MapReduce Framework)

  • 김진현;심규석
    • 정보처리학회논문지D
    • /
    • 제18D권2호
    • /
    • pp.81-88
    • /
    • 2011
  • 시퀀스(sequence) 데이터가 주어졌을 때 그 중에서 빈번(frequent)한 순차 패턴을 찾는 순차 패턴 마이닝(sequential pattern mining)은 여러 어플리케이션(application)에 사용되는 중요한 데이터마이닝 문제이다. 순차 패턴 마이닝은 웹 접속 패턴, 고객 구매 패턴, 특정 질병의 DNA 시퀀스를 찾는 등 광범위한 분야에서 사용된다. 본 논문에서는 맵리듀스(MapReduce) 프레임웍 상에서 맵리듀스 함수 호출을 최적화하는 순차 패턴 마이닝 알고리즘을 개발하였다. 이 알고리즘은 여러 대의 기계에 데이터들을 분산시켜 병렬적으로 빈번한 순차 패턴을 찾는다. 실험적으로 다양한 데이터를 이용하여 파라미터 값을 변화시켜가며 제안된 알고리즘의 성능을 종합적으로 확인하였다. 그리고 실험 결과를 통해 제안된 알고리즘은 기계 수에 대해 선형적인 속도 개선을 보인다는 것을 확인하였다.