본 논문에서는 FMC의 로봇 경로 분석 및 설계를 하기 위해 시뮬레이션을 이용해 FMC의 로봇 패턴을 분석하고 그 결과를 이용해 최적의 로봇 경로를 설계하는 방법을 제시하였다. 전형적인 FMC를 시뮬레이션으로 설계하고 설비에서 신호를 추출 해 순차 패턴 마이닝을 이용해 로봇의 최적 이동 경로를 도출하는 방법을 제시하였다. 이러한 신호의 패턴을 이용한 분석 방법은 로봇의 경로 설계를 도출하기가 용이하여 최적의 경로를 설계하여 FMC에 적용한 결과 기존보다 총 처리량의 증가와 총 처리시간 감소를 가져왔다. 또한 이 방법은 FMC 뿐만 아니라 로봇이 있는 모든 생산라인에 시뮬레이션을 통해 분석이 가능하기 때문에 생산성 향상에 크게 기여할 것으로 기대된다.
Some of the current main research areas involving techniques related to XML consist of storing XML documents, optimizing the query, and indexing. As such we may focus on the set of documents that are composed of various structures, but that are not shared with common structure such as the same DTD or XML Schema. In the case, it is essential to analyze structural similarities and differences among many documents. For example, when the documents from the Web or EDMS (Electronic Document Management System) are required to be merged or classified, it is very important to find the common structure for the process of handling documents. In this paper, we transformed sequential pattern mining algorithms(1) to extract maximal similar paths between two XML documents. Experiments with XML documents show that our transformed sequential pattern mining algorithms can exactly find common structures and maximal similar paths between them. For analyzing experimental results, similarity metrics based on maximal similar paths can exactly classify the types of XML documents.
There are many technical problems in the recommendation system based on very large database(VLDB). So, it is necessary to study the recommendation system' structure and the data-mining technique suitable for the large scale Internet shopping mail. Thus we design and implement the product recommendation system using k-means clustering algorithm and sequential pattern technique which can be used in large scale Internet shopping mall. This paper processes user information by batch processing, defines the various categories by hierarchical structure, and uses a sequential pattern mining technique for the search engine. For predictive modeling and experiment, we use the real data(user's interest and preference of given category) extracted from log file of the major Internet shopping mall in Korea during 30 days. And we define PRP(Predictive Recommend Precision), PRR(Predictive Recommend Recall), and PF1(Predictive Factor One-measure) for evaluation. In the result of experiments, the best recommendation time and the best learning time of our system are much as O(N) and the values of measures are very excellent.
Along with the advent of ubiquitous computing environment, it is becoming a part of our common life style that the demands for enjoying the wireless internet using intelligent portable device such as smart phone and iPad, are increasing anytime or anyplace without any restriction of time and place. The recommending service becomes a very important technology which can find exact information to present users, then is easy for customers to reduce their searching effort to find out the items with high purchasability in e-commerce. Traditional mining association rule ignores the difference among the transactions. In order to do that, it is considered the importance of type of merchandise or service and then, we suggest a new recommending service using mining sequential pattern based on weight to reflect frequently changing trends of purchase pattern as time goes by and as often as customers need different merchandises on e-commerce being extremely diverse. To verify improved better performance of proposing system than the previous systems, we carry out the experiments in the same dataset collected in a cosmetic internet shopping mall.
고병원성 조류 인플루엔자는 빠른 확산과 높은 치사율로 인하여 발병 초기에 질병의 확산경로 및 확산범위를 예측한다는 것은 매우 어려운 문제이면서 동시에 반듯이 해결해야만 하는 중요한 과제이다. 본 연구에서는 공개된 법정 고병원성 조류인플루엔자의 발병데이터를 기반으로 순차패턴 마이닝을 적용하여 질병의 순차적인 확산경로 규칙을 도출한 후, 그 결과를 바탕으로 지역개념계층(location concept hierarchy)에 따른 추상화 레벨의 점진적인 조절을 통하여 지역 원도우의 확대와 축소를 적용함으로써 도시(city)레벨부터 리(street)레벨까지의 질병확산경로 그래프와 GIS기반의 질병확산경로에 대한 분석을 시도하였다.
주식 예측은 주식 시장이 생긴 이래로 투자자들이나, 금융 전문가들 사이에서 매우 중요한 일이 되어 왔다. 그러한 중요성으로 인해 엘리오트 파동이론과 같은 많은 주식 예측 기법이 제시되었고, 또한 이러한 예�G의 자동화를 위해 인공지능분야에서도 많은 연구가 있어왔다. 주가 예측에 패턴인식 방법을 적용한 기존의 연구로는 주로 ANN(Artificial Neural Network)방식과 은닉 마코프 모델(HMM, Hidden Markov Model)이 있었고, 본 논문에서는 HMM을 이용한 방법을 제안한다. HMM은 시간 순차적인 패턴을 가지는 모델의 인식에 좋은 성능을 보여 주로 음성인식 분야에서 많이 이용되고 있다. 주식 변화 역시 시간 순차적 흐름에 따라 기울기의 변화가 어느 정도 일정한 패턴을 가지는 성질이 있고, 이것은 HMM을 이용한 패턴인식으로 주식의 앞으로의 변화를 예측하기에 적합한 요인이 된다. 본 논문에서는 이를 위해 다음과 같은 과정을 걸쳤다. 첫 번째로 실존 회사의 장기간의 주식 테이터를 기반으로 여러 개의 HMM모델을 학습 하였다. 두 번째로 예측하고자 하는 기간 이전의 주식 변화 데이터를 입력으로 하여, 이전에 이와 유사한 패턴이 있었는지를 HMM을 통해 알아냈다. 마지막으로 이렇게 알아낸 패턴을 이용하여 앞으로의 주식 변화를 예측하였다. 실험은 실제 주식 변화와 예측값의 비교를 통해 정확도를 검증하였다.
Proceedings of the Korea Multimedia Society Conference
/
2004.05a
/
pp.255-258
/
2004
본 논문에서는 필기수식의 인식 및 계산을 목적으로 입력 필기수식의 심볼별 분리 및 순차적 정렬 후 인식하는 알고리즘을 제안한다. 제안된 방법은 온라인 필기인식의 특징인 실시간 개념을 이용하여 태블릿 상에서 입력받은 수식의 픽셀별 좌표를 입력받아서 분리 과정을 수행 한 후, 필기순서와 무관한 순차적인 하나의 완성된 수식을 제공한다. 다음으로 통계적 패턴 정합 및 숫자별 특정 가중치를 이용하여 완성된 수식을 인식하고 계산 결과를 출력한다. 본 모듈은 PDA에 임베디드를 목적으로 구현하였으며, 여러 검증과정을 통해 약 98%의 인식률 향상을 얻을 수 있었다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.231-234
/
2004
본 논문에서 리눅스 프로세스들의 패턴들(정상행위 와 비정상행위)을 학습하고 그 밖에 예비 시험들의 확장을 제시하는데 의가 있다고 할 수 있다. 패턴들은 리눅스 시스템들 안에 오용과 침입들을 확인 할 수 있도록 사용하였다. 리눅스 sendmail 프로세스의 처리의 정상행위 그리고 비정상 행위들을 위해 운영체제 호출 순차들에서 기계 학습 작업을 고안하였다. 이 방법은 테스트 기록 데이터의 정상행위로부터 sendmail의 비정상행위의 실행을 모두 정확하게 구별할 수 있는 것을 보여준다. 예비 시험들은 기계학습이 침입탐지 서비스를 제공하기 위하여 저장 된 순차 정보를 추출화 함으로써 중요한 역할을 다 할 수 있다는 것으로 나타냈다.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.24-26
/
2000
인터넷이 급속도로 성장함에 따라 웹사이트의 숫자도 늘어나고, 많은 정보들이 등록되었다. 웹사이트들은 사용자의 정보획득을 위해 다양한 하이퍼링크를 제공하고, 전문(full-text) 검색엔진을 도입하기도 하나, 웹사이트에 등록되는 정보의 양이 많아지면서 전문검색엔진의 유용성이 점점 줄어들고 있다. 따라서 본 논문에서는 사용자가 좀 더 친근하고 빠른 방법으로 웹사이트에 있는 정보를 습득할 수 있도록 하는 대화형 도우미에이전트를 제안한다. 즉, 사용자가 일상적으로 사용하는 자연어로 된 문장을 웹사이트 내의 도우미 에이전트와 주고받음으로써, 사용자가 원하는 정보를 얻을 수 있도록 한다. 도우미에이전트의 지식을 패턴-답변형태로 저장하고, 순차적 패턴매칭 기법을 이용하여 사용자가 원하는 대화를 이끌어낸다.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.204-206
/
2012
스마트폰 시장의 확대로 인한 스마트폰 고객의 증가와 스마트폰을 이용한 제품 구매 활동이 급격하게 증가하고 있다. 이러한 추세에 따라 스마트폰 고객 추천 시스템에 관한 연구가 활발히 진행되고 있다. 하지만 기존의 스마트폰 고객 추천 시스템의 경우 고객들의 고차원 데이터를 효율적으로 처리하는데 어려움이 있다. 따라서 이 논문에서는 스마트폰 고객들의 고차원 데이터를 효율적으로 처리할 수 있는 부분 공간 군집화 기법과 순차 패턴 알고리즘을 이용한 제품 추천 시스템을 제안한다. 이 시스템은 스마트폰 고객들의 고차원 데이터를 기반으로 세분화된 고객들의 부분 군집화를 한다. 이들 군집화를 기반으로 순차적 패턴 알고리즘을 이용한 고객들의 제품 구매 패턴을 추출한다. 이 연구를 통해 스마트폰 고객들의 다양한 고차원 데이터를 이용한 제품 추천 시스템은 기업의 제품 판매 및 고객 마케팅에 긍정적인 도움을 줄 수 있을 것으로 기대된다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.