• Title/Summary/Keyword: 순응기구

Search Result 20, Processing Time 0.029 seconds

5자유도 순응기구

  • 정경한;최용제
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.90-90
    • /
    • 2003
  • PDF

Kinestatic Control using a Compliant Device by Fuzzy Logic (퍼지 논리에 의한 순응기구의 위치/힘 동시제어)

  • Seo, Jeong-Wook;Choi, Yong-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.917-922
    • /
    • 2004
  • As the tasks of robots become more diverse, some complicated tasks have come to require force and position hybrid control. A compliant device can be used to control force and position simultaneously by separating the twist of the robot's end effector from the twist of compliance and freedom by using stiffness mapping of the compliant device. The development of a fuzzy gain scheduling scheme of control for a robot with a compliant device is described in this paper. Fuzzy rules and reasoning are performed on-line to determine the gain of twists based on wrench error and twist error and twist of compliance and twist of freedom ratio. Simulation results demonstrate that better control performance can be achieved in comparison with constant gain control.

  • PDF

Dynamic behavior of a scroll compressor with radial compliance device (반경방향 순응기구를 갖는 스크롤 압축기의 동적 거동)

  • 김현진;김재호;이진갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.33-43
    • /
    • 1998
  • Dynamic behavior of a scroll compressor has been investigated analytically. The equations of motion of moving elements of the scroll compressor such as the orbiting scroll, anti-rotation device, slider bush, and the crank shaft with eccentric crank pin have been set up. As the solutions of these equations, reaction forces between the moving elements, and also between the moving elements and the compressor frame have been calculated. The reaction forces from the moving elements to the frame are the unbalanced forces, which produce accelerations of the compressor body. These accelerations can be used as a measure of the compressor vibration. The major contributions to the unbalanced forces come from the orbiting movement of the orbiting scroll.

  • PDF

Stability of the axially compliant fixed scroll in scroll compressors (스크롤 압축기에서 축방향 순응하는 고정부재의 안정성)

  • Kim, H.J.;Lee, W.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-103
    • /
    • 1997
  • This study presents a way of improving the stability of fixed scroll in scroll compressors. For the scroll compressor whose fixed scroll is designed to move in the axial direction for the axial compliance, the fixed scroll is under the influence of the overturning moment produced by internal gas forces. Unless the overturning moment is properly compensated by the moments of reaction forces at the suspension of the fixed scroll to the compressor frame, the fixed scroll would exhibit wobbling motion, increasing gas leakage through the gap induced by the wobbling of the fixed scroll between the two scroll members. The conditions on which the wobbling motion can be suppressed have been found analytically; The axial position of the fixed scroll suspension should be made within a certain range. The upper limit of this range is the axial location for the o-rings which are inserted between the fixed scroll and the back pressure chamber to promote sealing for the gas in the back pressure chamber. And the lower limit is mainly determined by the magnitude of the axial sealing force. As long as the axial sealing force is not negative over all crank angles, the lower limit is not above the mid-height of the scroll wrap. Larger axial sealing force lower the lower limit.

  • PDF

Design of a 6-axis Compliance Device with F/T Sensing for Position/Force Control (위치/힘 동시제어를 위한 F/T측정 기능을 갖는 6축 순응기구 설계)

  • Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2018
  • In this paper, the design of a novel 6-axis compliance device with force/torque sensing capability and the experiment results on force measurement are presented. Unlike the traditional control methods using a force/torque sensor with very limited compliance, the force control method employs a compliant device to provide sufficient compliance between an industrial robot and a rigid environment for more stable force control. The proposed compliance device is designed to have a diagonal stiffness matrix at the tip and uses strain gauge measurement which is robust to dust and oil. The measurement circuit is designed with low-cost IC chips however the force resolution is 0.04N.

Kinestatic Control using Six-axis Parallel-type Compliant Device (6축 병렬형 순응기구를 이용한 위치/힘 동시제어)

  • Kim, Han Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.421-427
    • /
    • 2014
  • In this paper, the kinestatic control algorithm using a six-axis compliant device is presented. Unlike the traditional control methods using a force/torque sensor with very limited compliance, this method employs a compliant device to provide sufficient compliance between an industrial robot and a rigid environment. This kinestatic control method is used to simply control the position of an industrial robot with twists of compensation, which can be decomposed into twists of compliance and twists of freedom. A simple design method of a six-axis parallel-type compliant device with a diagonal stiffness matrix is presented. A compliant device prototype and kinestatic control hardware system and programming were developed. The effectiveness of the kinestatic control algorithm was verified through two kinds of kinestatic control experiments.

위험작업을 위한 원격조종용 로봇 ROBHAZ-DT3

  • 이우섭;강성철;이성하
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.25-25
    • /
    • 2004
  • 이 논문에서 다루는 주제는 수동 기구부에 의해 자동으로 지면 적응이 가능한 이중 트랙 구조를 가진 ROBHAZ-DT3에 대한 설계 및 구성이다. 이 로봇은 기본적으로 군사용과 민간용으로 동시에 사용 가능하게 설계되어 있다. 이 로봇에 사용된 이중 트랙 구조는 앞쪽과 뒤쪽 트랙 사이에 수동적인 회전 조인트를 설치한 것으로 이 구조에 의해서 로봇의 트랙은 주행을 하면서 지면에 중력방향으로 순응하면서 형상이 변형되어 계단과 같은 험한 비평탄 지형에서도 높은 지형적응력을 보여주어 주행성능을 높여준다.(중략)

  • PDF