• Title/Summary/Keyword: 순수 대칭적 J 측도

Search Result 1, Processing Time 0.013 seconds

Utilizing Purely Symmetric J Measure for Association Rules (연관성 규칙의 탐색을 위한 순수 대칭적 J 측도의 활용)

  • Park, Hee-Chang
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2865-2872
    • /
    • 2018
  • In the field of data mining technique, there are various methods such as association rules, cluster analysis, decision tree, neural network. Among them, association rules are defined by using various association evaluation criteria such as support, confidence, and lift. Agrawal et al. (1993) first proposed this association rule, and since then research has been conducted by many scholars. Recently, studies related to crossover entropy have been published (Park, 2016b). In this paper, we proposed a purely symmetric J measure considering directionality and purity in the previously published J measure, and examined its usefulness by using examples. As a result, it is found that the pure symmetric J measure changes more clearly than the conventional J measure, the symmetric J measure, and the pure crossover entropy measure as the frequency of coincidence increases. The variation of the pure symmetric J measure was also larger depending on the magnitude of the inconsistency, and the presence or absence of the association was more clearly understood.