최근 휴대폰 카메라로 촬영한 영상을 입력으로 사용하는 시스템에 대한 연구가 활발히 이루어지고 있다. 본 논문에서는 와인라벨의 문자를 인식한 후, 데이터베이스내의 와인이미지들 중에서 입력 와인라벨 이미지와 유사한 순서대로 사용자에게 보여주는 시스템을 제안한다. 이미지의 유사도 계산을 위해 본 논문에서는 이미지의 각 영역별 대표색상, 텍스트 영역의 텍스트 색상과 배경색상, 그리고 특징점의 분포를 특징으로 사용한다. 이미지의 색상차를 계산하기 위해 RGB색상을 CIE-Lab색상으로 변환하여 사용하고, 특징점은 해리스코너 검출 알고리즘을 사용하여 추출한다. 각 셀의 대표 색상차와 텍스트 색상차 및 배경 색상차는 가중치를 적용하여 색상차 유사도를 계산하고 색상차 유사도와 특징점 분포 유사도를 정규화하여 최종 이미지 유사도를 구한다. 본 논문에서는 입력 이미지와 데이터베이스내의 이미지 간의 유사도를 계산하여 유사도 순으로 사용자에게 검색 결과를 보여줌으로써 검색 결과로부터 다시 최대 유사 와인라벨을 수동으로 찾는 노력을 줄일 수 있다.
확률도시위치는 주로 도시적 해석을 통한 연최대홍수량 또는 연최대강우량의 초과확률의 추정치 산정에 사용되며 빈도해석을 통해 선정된 적정 확률분포형과 표본자료의 적합도를 도시적으로 파악할 수 있도록 해주기 때문에 오래 전부터 수문 및 수자원 분야에 널리 이용되어 왔다. 본 연구에서는 Gumbel 분포에 적합한 도시위치공식을 추정하고자 Gumbel 분포의 순서통계량과 확률가중모멘트를 이용하여 다양한 표본크기에 대한 도시위치공식의 기본식을 유도하였고, 최적화 기법 중 하나인 유전자 알고리즘을 이용하여 도시위치공식의 매개변수를 추정하였다. 또한 Gumbel 분포에 적합한 도시위치공식을 검토하고자 Gumbel 분포의 이론적인 축소변량과 본 연구에서 추정한 도시위치공식과 기존의 도시위치공식에 의해 계산된 축소변량 간의 평균제곱근오차와 편의를 비교하였다. 그 결과, Gringorten이 제안한 도시위치공식을 적용한 경우의 축소변량간 평균제곱근오차와 순서별 편의가 가장 작은 것으로 분석되었다.
화물의 흐름은 물류시설 투자 및 물류관련 정책 수립에 필요한 핵심적인 기초자료이다. 국가승인통계인 화물자동차의 기종점 통행량은 분석의 공간적 해상도가 시군구 단위로 집계되고 있다. 이는 물류시설 방문 및 이용에 관한 상세한 정보로 활용하는데 한계가 있다. 본 연구에서는 화물차의 이동 정보를 분석함에 있어 공간적 해상도를 시설단위로 식별 추출할 수 있는 방법론을 트립체인 정보를 활용하여 개발하고자 하였다. 먼저, DTG를 활용하여 개별 화물차량의 방문지 위치정보를 식별하고, 화물차의 통행 순서정보를 이용하여 화물차량의 방문한 공간적 범위를 H3 기반의 폴리곤으로 생성하였다. 생성된 트립체인 폴리곤 간의 연계성을 전국 단위로 분석함으로 폴리곤의 H3 해상도를 결정하였으며, 최적의 해상도를 동적으로 도출하기 위한 파라미터의 결정 알고리즘을 개발하였다. 전국을 대상으로 실증하여 폴리곤을 생성하고 최적 해상도 결정 결과 공간 적합도는 81.26% 수준으로 확보되고 오차율은 14.8% 수준으로 검증되었다. 본 연구에서 개발한 방법론으로 화물차량의 통행체인 특성과 방문 시설의 특성에 따라 군집화함으로 물류 거점을 기준으로 화물의 특성을 파악할 수 있는 기반을 마련하였다.
교본 연구는, 구간속도 검지를 위한 기존의 방법인 프로브차량 방식과 차량 번호판 인식 방식의 문제점을 보완할 수 있는 대안으로써, 도로 구간 시.종점에서의 차량 시퀀스 패턴을 이용하여 구간속도 검지가 가능토록 하는 알고리즘을 개발, 제시하였다. 본 알고리즘은 구간 시.종점에서의 차량들을 '차종 순차(Precedence)패턴을 순서대로 나열한 일정한 길이의 시퀀스 그룹'으로 인식하고, 종점에서의 특정 시퀀스에 대응하는, 시점에서의 시퀀스를 탐색하여 가장 유사도가 높은 시퀀스를 동일 그룹으로 간주하여 해당 구간의 통행 시간을 산출하였다. 유사도 비용의 정의에 따라 세 가지의 모델을 제시하였으며, 차량 유출입에 의한 이상치를 제거하고 가공함으로써 정보제공 주기에 가장 적합한 구간 대표 통행시간을 산출할 수 있도록 하였다. 컴퓨터 모의 실험을 통해 구간길이와 통과차량 수를 증가시키면서 차종별, 시.종점의 시퀀스 길이별로 반복 시뮬레이션 한 결과, 평균 최대 오차율 3.46%로서 현장 적용성에서 뛰어난 가능성을 보였다.
시퀀스란 두 항목 간의 순서가 존재하는 데이터를 말하며, 고객 한 명이 구매한 상품들이 나열된 구매이력 데이터는 대표적인 시퀀스 데이터 중 하나이다. 일반적으로 모든 상품은 대분류/ 중분류/ 소분류와 같은 상품 분류 체계를 가지며, 서로 다른 상품이더라도 비슷하다면 그 특성에 따라 동일한 범주로 분류된다. 따라서 본 논문에서는 두 구매이력 시퀀스 비교 시 상품의 구매 순서를 고려할 뿐만 아니라, 비교하고자 하는 두 상품이 다르더라도 서로 동일한 상품 군에 속한다면 더 높은 유사도를 부여하여 계산한다. 특히 구매이력 시퀀스 유사도 계산 성능에 직접적인 영향을 미치는 시퀀스 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 시퀀스 간 유사도 측정 방법인 레벤슈타인 거리, 동적 타임 워핑 거리, 니들만-브니쉬 유사도의 성능을 비교하였으며, 항목간의 계층구조도 반영하여 계산하도록 확장하였다. 기존의 유사도 측정 방법의 경우 시퀀스 내 상품 비교 시 상품의 일치 유무에 따라 단순히 0 또는 1의 값을 부여하여 계산한다. 하지만 제안 방법의 경우 서로 다른 상품이더라도 두 상품 간의 연관정도를 다르게 부여하기 위하여 상품 분류 트리를 사용하여 0에서 1 사이의 값을 가지도록 세분화하였다. 실험을 통해 세 알고리즘에 제안 방법을 적용한 경우 기존 방법에 비하여 구매이력 시퀀스 간의 유사도를 더 정확히 측정함을 확인하였다. 또한 정확성 측정 비교 실험을 통해 동적 타임 워핑 유사도가 다른 두 유사도 측정 방법에 비하여 시퀀스 내 상품의 연관 정도를 고려할 뿐만 아니라 두 시퀀스의 길이가 다른 경우에도 좋은 성능을 보였기 때문에 구매이력 데이터에서 시퀀스 간의 유사도 비교 시 가장 적합한 측정 방법임을 확인하였다.
빅데이터 시대를 맞이하여 인공지능 분야는 괄목할만한 성장을 보이고 있으며 특히 딥러닝에 의한 이미지 분류 학습방법이 중요한 영역으로 자리하고 있다. 이미지 분류에서 많이 사용되어 온 CNN의 성능을 더욱 개선하기 위해 다양한 연구가 활발하게 진행되었는데, 이 중에서 대표적인 방법이 CRNN(Convolutional Recurrent Neural Network) 알고리즘이다. CRNN 알고리즘은 이미지 분류를 위한 CNN과 시계열적 요소를 인식하기 위한 RNN의 조합으로 구성되는데, CRNN의 RNN영역에서 사용하는 입력값은 학습 대상의 이미지를 합성곱과 풀링 기법을 적용하여 추출된 결과물을 flatten한 값이고, 이 입력값들은 이미지 내 동일 위상에 있는 픽셀값들이 서로 다른 순서로 나타나기 때문에, RNN에서 의도한 이미지 내 배열 순서를 제대로 학습하기 어렵다는 한계점을 지닌다. 따라서 본 연구는 인코더와 디코더의 개념을 응용한 CNN과 RNN의 새로운 하이브리드 방법을 제안하여, 이미지 분류 성능을 향상시키는 것을 목적으로 하였다. 본 연구에서는 다양한 알고리즘 비교 실험을 통해, 새로운 하이브리드 방법의 효과성을 검증하였다. 본 연구는 인코더와 디코더 개념의 적용 가능성을 넓히고, 제안한 방법이 기존 하이브리드 방법에 비해, 복잡도가 크게 증가하지 않아 모델 학습 시간과 인프라 구축 비용 측면에서 이점을 있다는 점에서 학문적 시사점을 가진다. 또한, 정확한 이미지 분류가 필요한 다양한 분야에서 제공되는 서비스의 품질을 높일 수 있는 가능성을 제시하였다는 점에서 실무적 시사점을 가진다.
본 논문에서는 공간의존행렬과 신경망을 이용하여 문서영상에서 인식대상 문자가 포함되어 있는 블록들을 좀더 세분해 낼 수 있는 효과적인 방법을 제시 하였다. 제안 된 방법은 명암도 문서블록에서 공간의존행렬을 구하고 7가지 질감 특징을 추출한 뒤 신경망을 이용해 문서블록을 9가지 유형으로 분류할 수 있도록 하였다. 특히 기존에는 비문자영역으로 분류되던 수식, 도표, 순서도 등 주로 문자가 포함되어 있는 블록들을 세분해 낼 수 있도록 하였다. 또한 신경망 학습알고리즘인 BP 를 사용함으로써 기존의 선형분류시에 요구되던 유형별 임계값과 선형면결정지수를 찾는 어려움을 해소하였다. 명암도영상을 이진화하기 전에 먼저 Sobel연산을 적용함으로써 문서 뒷면에 의한 배경 잡음의 영향을 줄일 수 있도록 하였고, 교차 문지르기 후 분할함으로써 블록이 작은 조각으로 나누어지는 것을 방지하도록 하였다. 실험결과 제안한 방법에서는 문자가 포 함되어 있는 블록은 큰 문자, 중간문자, 작은 문자블록 및 수식, 순서도, 도표블록의 6가지로, 그리고 비문자블록은 인물사진, 그래프 등 3가지 유형으로 상세하게 분류 할수 堞있었으며 전체적인 분류성능도 우수함을 확인할 수 있었다.
컴퓨터와 통신 기술이 발전함에 따라 최근의 교육 환경은 학습자 스스로 학습 내용, 학습 시간 및 학습 순서를 선택하고 조직하는 유비쿼터스 학습 방향으로 나아가고 있다. 방대한 양의 학습정보들은 대부분 문서 형태로 관리되고 있기 때문에 문서 단위로 표현된 많은 정도들을 효과적으로 관리하고 검색하기 위한 방법의 연구가 필요하게 되었다. 문서 클러스터링은 문서간의 유사도를 바탕으로 서로 연관된 문서들을 군집화하여 문서틀을 주제별로 통합하는 방법으로 대용량의 문서들을 자통으로 분류하고, 검색하는 데 있어서 검색의 정확성을 증대시킬 수 있다. 따라서 본 논문에서는 새로운 학습 문서의 추가나 기존문서의 삭제로 인하여 군집화 대상이 되는 학습 문서 집합이 점진적으로 변화하는 환경을 위한 점진적 문서 클러스터링 알고리즘을 제안한다. 점진적 문서 클러스터링 알고리즘은 새로운 문서가 추가되었을 경우 문서 전체를 다시 클러스터링하지 않고. 이미 생성된 클러스터들의 구조를 적응적으로 변화시킴으로써 높은 효율성을 제공할 수 있다. 또한, 문서 글러스터링의 정확도극 높이기 위하여 통계적인 기법으로 불용어를 판별하여 제거하는 알고리즘을 제안한다.
본 논문은 영한 기계번역을 위한 예제기반 기계번역에서 예제 문장의 비교를 위한 척도에 관한 것으로 주어진 질의 문장과 가장 유사한 예제 문장을 찾아내는데 사용되는 유사성 척도를 제안한다. 제안하는 척도는 편집거리 알고리즘에 기반을 둔 것으로 표면어가 일치하지 않는 단어에 대해 기본적으로 단어의 표제어 정보와 품사 정보를 이용하여 유사도를 계산한다. 편집거리 척도는 비교 단위의 순서에 의존적이기는 하지만 순서만 일치하면 동일한 유사성 기여도를 갖는 것으로 판단하기 때문에 완전 문맥을 반영하지는 못한다. 따라서 본 논문에서는 완전 문맥 반영을 위해 추가적으로 이들 정보 외에 일치하는 단위 정보를 갖는 연속된 단어들에 대해 연속 정보를 반영한 문맥 가중치를 제안한다. 또한 비유사성 정도를 의미하는 척도인 편집거리 척도를 유사성 척도로 변경하고, 문맥 가중치가 적용된 척도를 문장 비교에 적용하기 위하여 정규화를 수행하며, 이를 통하여 유사도에 따른 순위를 결정한다. 또한 언어적 정보를 이용한 기존 방법류들에 대한 일반화를 시도하였으며, 문맥 가중치가 적용된 척도의 우수성을 증명하기 위해 일반화된 기존 방법류들과의 비교 실험을 수행하였다.
본 논문에서는 도로 네트워크 데이타베이스에서 정적 객체의 k-최근접 이웃 질의를 효율적으로 처리하기 위한 방안을 논의한다. 기존의 여러 기법들은 인덱스를 사용하지 못했는데, 이는 네트워크 거리가 순서화 된 거리함수가 아니며 삼각 부등식(triangular inequality) 성질 또한 만족하지 못하기 때문이다. 이러한 기존 기법들은 질의 처리 시 심각한 성능 저하의 문제를 가진다. 선계산된 네트워크 거리를 이용하는 또 다른 기법은 저장 공간의 오버헤드가 크다는 문제를 갖는다. 본 논문에서는 이러한 두 가지 문제점들을 동시에 해결하기 위하여 객체들 간의 네트워크 거리를 근사하여 객체들에 대한 인덱스를 구축하고, 이를 이용하여 k-최근접 이웃 질의를 처리하는 새로운 기법을 제안한다. 이를 위하여 본 논문에서는 먼저 네트워크 공간상의 객체를 유클리드 공간상으로 사상하기 위한 체계적인 방법을 제시한다. 특히, 삼각 부등식 성질을 만족시키기 위하여 평균 네트워크 거리라는 새로운 거리 개념을 제시하고, 유클리드 공간으로의 사상을 위하여 FastMap 기법을 사용한다. 다음으로, 평균 네트워크 거리와 FastMap을 사용하여 네트워크 공간상의 객체들로 인덱스를 구축하는 근사 색인 알고리즘을 제시한다. 또한, 구축한 인덱스를 사용하여 k-최근접 이웃 질의를 효과적으로 수행하는 알고리즘을 제안한다. 마지막으로, 실제 도로 네트워크를 이용한 다양한 실험을 통하여 제안된 기법의 우수성을 규명한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.