W3C의 권고안인 RDF Semantics는 RDFS 추론에 사용할 RDFS 함의 규칙을 제안하였다. 널리 사용되고 있는 RDF 저장소 시스템인 Sesame는 전방향 추론 방식을 사용하여 RDBMS 기반 RDFS 추론을 지원한다. Sesame의 전방향 추론 전략을 사용할 때에는 데이타 저장 시에 추론을 하기 때문에 추론 성능이 데이타 저장 성능에 영향을 미친다. 이런 문제점을 개선하기 위해 본 논문에서는 RDBMS 기반의 전방향 추론 엔진의 성능 향상을 위한 RDFS 함의 규칙 적용 순서를 제안한다. 제안한 규칙 적용 순서는 추론 과정을 대부분의 경우 추론 과정의 반복 없이 한번에 끝낼 수 있도록 하며 완벽한 추론 결과를 보장한다. 또한 앞서 적용한 규칙에 의해 생성된 결과를 추측할 수 있어 추론 과정에서 중복된 결과 생성을 줄일 수 있다. 본 논문에서는 실제 사용하는 RDF 데이타들을 사용하여 Sesame와의 추론 성능을 비교하며 제안한 방법이 RDFS 추론 성능을 향상시킬 수 있음을 보인다.
최근 스마트 디바이스가 많이 보급되면서 개인 영상 미디어가 다양한 방식으로 생성되어 영상 미디어를 이용한 서비스가 요구되고 있다. 이에 따라 영상 미디어 분석 및 인지 기술에 대한 연구가 활발히 진행되어, 영상으로부터 의미 있는 객체를 인지할 수 있게 되었다. 기존의 미디어 온톨로지를 이용한 시스템은 영상의 제목, 태그 및 스크립터 정보를 이용하기 때문에 영상에 등장하는 객체를 통해 미디어 분류를 수행할 수 없는 단점이 있다. 따라서 본 논문에서는 영상 미디어 데이터에서 인지되는 객체들을 이용해 해당 영상이 속하는 범주로 자동 분류하기 위해 서술논리 기반(Description Logic) 추론 시스템과 순서에 따라 달라질 수 있는 이벤트 처리를 위한 규칙 기반 추론 시스템을 제안한다. 제안하는 서술논리 기반 추론 시스템은 영상 미디어에서 인지되는 객체들의 관계를 서술논리로 정의된 행위(Activity) 온톨로지로 표현하고, 실체화 추론을 통해 인지된 객체가 행위로 추론되는 방법에 대해 설명한다. 규칙 기반 추론 시스템은 추론된 행위의 순서에 따른 이벤트를 정의하고 순서 기반 규칙 추론을 이용하여 범주에 알맞은 이벤트로 자동 분류하는 방법에 대하여 설명한다. 제안하는 방법의 타당성을 증명하기 위해 유투브의 영상에 대한 분석을 통해 올바른 범주로 분류된 미디어 데이터를 구성하여 제안하는 시스템의 타당성을 증명하였다.
최근 들어 대용량 온톨로지를 사용하여 분산 환경에서 사용자 정의 규칙을 기반으로 하는 SWRL 추론엔진에 대한 연구가 다양하게 진행되고 있다. 스키마를 기반으로 하는 공리 규칙과 다르게 SWRL 규칙들은 미리 효율적인 추론 순서를 정의할 수 없다. 또한 불필요한 반복과정으로 인해 많은 양의 네트워크 셔플링이 발생한다. 이러한 문제점들을 해결하기 위해서 본 논문에서는 Map-Reduce 알고리즘과 인메모리 기반의 분산처리 프레임워크를 활용하여 동시에 여러 규칙을 추론할 수 있고, 클러스터의 노드간에 발생하는 데이터 셔플링의 양을 최소화할 수 있는 방법을 제안한다. 제안하는 방법의 성능을 측정하기 위해 약 2억 트리플로 구성된 WiseKB 온톨로지와 36개의 사용자 정의 규칙을 사용하여 실험을 진행했고 약 16분이 소요되었다. 또한 LUBM 벤치 마크 데이터를 이용한 비교 실험에서 기존 연구보다 2.7배 높은 성능을 보였다.
빅데이터 시대가 도래 하면서 시맨틱 데이터의 양이 빠른 속도로 증가하고 있다. 이러한 대용량 시맨틱 데이터에서 의미 있는 암묵적 정보를 추론하기 위해서 지식 사용자의 경험적 지식을 기반으로 작성된 SWRL(Semantic Web Rule Language) 규칙들을 활용하는 많은 연구가 진행되고 있다. 그러나 기존의 단일 노드의 추론 시스템들은 대용량 데이터 처리에 한계가 있고, 다중 노드 기반의 분산 추론 시스템들은 네트워크 셔플링으로 인해 성능이 저하되는 문제점들이 존재한다. 따라서 본 논문에서는 기존 시스템들의 한계를 극복하고 보다 효율적인 분산 추론 방법을 제안한다. 또한 네트워크 셔플링을 최소화 할 수 있는 데이터 파티셔닝 전략을 소개하고, 점증적 추론에서 사용되는 추가된 새로운 데이터의 선별과 추론 규칙의 순서결정으로 추론 과정을 최적화 할 수 있는 방법에 대해 설명한다. 제안하는 방법의 성능을 측적하기 위해 약 2억 트리플로 구성된 WiseKB 온톨로지와 84개의 사용자 정의 규칙을 이용한 실험에서 32.7분이 소요되었다. 또한 LUBM 벤치 마크 데이터를 이용한 실험에서 맵-리듀스 방식에 비해 최대 2배 높은 성능을 보였다.
대한산업공학회/한국경영과학회 1993년도 춘계공동학술대회 발표논문 및 초록집; 계명대학교, 대구; 30 Apr.-1 May 1993
/
pp.265-274
/
1993
정보화 사회에서 대량으로 생산된 데이타 코드들은 일관된 설계 원칙없이 필요할 때마다 만들어 사용함으로써 정보의 중복 저장 및 정보교환에 있어서의 변환 작업등으로 인한 경비의 소요가 상당한 실정이다. 이러한 문제점에 대한 해결책으로 본 논문에서는 데이타코드 설계자가 일관성있게 데이타코드를 생성할 수 있도록 도와주는 데이타 코드 생성 지원 전문가 시스템의 설계에 관하여 연구하였다. 불완전 영역 설계를 위한 지식 획득과 표현에 적합한 전문가 시스템 쉘인 GUESS(Guideline Underlying Expert system Shell)를 설계하였다. GUESS는 전문가 시스템을 설계 지원 도구로 사용하는 사용자에게 기존에 작성된 적절한 설계 용례를 선택의 기준으로 제공하며, 유연성 있는 작업 지침들을 규칙으로 포함하고 있다. GUESS는 Prolog언어를 기반으로 한 추론기관과 설계지침을 포함하는 정적지식, 외부 데이타베이스를 연결한 동적 정보, 설계 세부방법을 담고 있는 부가도구들로 구성된다. GUESS/DCG는 데이타 코드 생성을 지원하기 위하여 데이타 코드의 유형과 선택기준 및 설계원리를 정적지식으로 가지며, 이를 경험적으로 탐색하는 추론 기관 및 사용자인 데이타 코드 설계자와 적절한 대화식 접근을 가능하게 하는 설명부분과 대화 인터페이스를 GUESS를 바탕으로 구현한 것이다. 특히 동적 정보의 적절한 이용과 데이타 코드의 통합된 저장, 일관성 있는 운영을 보장하기 위하여 개발중인 데이타 코드 관리시스템과의 인터페이스 부분을 추가하여 기존에 운영되고 있는 데이타 코드의 참고와 호환성, 확장성을 유지하였다. 이 시스템은 데이타 코드 관리시스템에 일관된 생성 수단을 제공하는것 외에도, 각 기관에서 대량으로 작성되는 데이타 코드를 유지, 보수하는 작업에도 큰 기여를 할 것이다.지의 선택작업이 행해지는 경우에 촛점을 맞추었다. 그리하여 다작업장의 휴리스틱에 의거한 작업순서 결정을 위해 우선 BB의 상한을 구하는 연구를 행했다. 이를 위해 우선 단일작업장에서 야기될 수 있는 모든 상황을 고려한 최적 작업순서 결정규칙을 연구했으며, 이의 증명을 위해 이 규칙에 의거했을 때의 보완작업량이 최소가 된다는 것을 밝혔다. 보완작업 계산의 효율성을 제고하기 위해 과부하(violation)개념을 도입하였으며, 작업유형이 증가된 상황에서도 과부하 개념이 보완작업량을 충분히 반영할 수 있음을 밝혔다. 본 연구에서 제시한 최적 작업순서 규칙에 의거했을 때 야기될 수 있는 여러가지 경우의 과부하를 모두 계산했다. 앞에서 개발된 단일작업량의 최적 작업순서 결정규칙을 이용하여 다작업장의 문제를 실험했다. 이 문제는 규모가 매우 크므로 Branch & Bound를 이용하였으며, 각 가지에서 과부하량이 최적인 경우만을 고려하는 휴리스틱을 택하여 실험자료를 이용하여 여러 회 반복실험을 행했다. 그리고 본 연구의 성과를 측정하기 위해 휴리스틱 기법시 소요되는 평균 CPU time 범위에서, 랜덤 작업순서에 따른 작업할당을 반복실험하여 이중 가장 좋은 해와 비교했다. 그러나 앞으로 다작업장 문제를 다룰 때, 각 작업장 작업순서들의 상관관계를 고려하여 보다 개선된 해를 구하기 위한 연구가 요구된다. 또한, 준비작업비용을 발생시키는 작업장의 작업순서결정에 대해서도 연구를 행하여, 보완작업비용과 준비비용을 고려한 GMMAL 작업순서문제를 해결하기 위한 연구가 수행되어야 할 것이다.로 이루어 져야 할 것이다.태를 보다 효율적으로 증진시킬 수 있는 대안이 마련되어져야 한다고 사료된다.$\ulcorner$순응$\lrcorner$의 범위를 벗어나지 않는다. 그렇기 때문에도
지식 관리 시스템을 운영하기 위해서는 대량의 지식 정보를 자동으로 추론 및 관리하는 기술이 필요하다. 현재, 이러한 시스템의 대다수는 컴퓨터간의 지식 정보를 자동으로 교환하고 스스로 새로운 지식을 추론하기 위해 온톨로지를 적용하고 있다. 따라서 대용량의 온톨로지를 대상으로 새로운 정보를 추론하는 효율적인 기술이 요구되고 있다. 본 논문은 분산 클러스터의 메모리상에서 MapReduce와 유사한 작업을 수행하는 Spark 프레임워크를 적용하여, SHIF 수준으로 작성된 대용량의 온톨로지를 규칙 기반으로 추론하는 기술에 대해서 제안한다. 이에 본 논문은 다음 3 가지에 초점을 맞추어 설명을 한다. 클러스터내의 분산된 메모리상에서 대용량 추론을 실시하기 위해서, 먼저 각 추론 규칙에 따라 대용량의 온톨로지 트리플을 효과적으로 분류하여 적재하기 위한 자료구조, 두 번째 규칙간의 종속 관계와 상호 연관성에 따른 규칙 실행 순서와 반복 조건 정의, 마지막으로 규칙 실행에 필요한 명령을 정의하고 이러한 명령어를 실행하여 추론을 수행하는 알고리즘에 대해 설명한다. 제안하는 기법의 효율성을 검증하기 위해, 온톨로지 추론과 검색 속도를 평가하는 공식 데이터인 LUBM을 대상으로 실험을 수행하였다. 대표적인 분산클러스터 기반 대용량 온톨로지 추론 엔진인 WebPie와 비교 실험한 결과, LUBM에 대해서 WebPie의 추론 처리량이 553 트리플/초 인데 비해 284배 개선된 157k 트리플/초의 성능 향상이 있었다.
UCC(User Created Contents) 형태의 다양한 영상 미디어 데이터가 증가함에 따라 의미 있는 서비스를 제공하기 위해 많은 분야에서 활발한 연구가 진행 중이다. 그 중 시맨틱 웹 기반의 미디어 분류에 대한 연구가 진행되고 있지만 기존의 미디어 온톨로지는 메타 정보를 이용하기 때문에 정보의 부재에 따른 한계점이 있다. 따라서 본 논문에서는 영상에서 인지되는 객체를 정하고 그 조합으로 구성된 서술 논리 기반의 온톨로지를 구축하고 영상의 장면에 따른 순서 기반의 규칙을 정의하여 이벤트 인지에 대한 기틀을 제안한다. 또한 증가하는 미디어 데이터에 대한 처리를 위해 분산 인-메모리 기반 프레임워크인 아파치 스파크 스트리밍을 이용하여, 영상 분류를 병렬로 처리하는 방법에 대해 설명한다. 유튜브에서 추출한 영상을 대상으로 대용량 미디어 온톨로지 데이터를 생성하고, 이를 이용하여 제시된 기법에 대한 성능 평가를 진행하여 타당성을 입증한다.
사용자가 질의한 내용에 대한 결과를 찾기 위해 본 논문은 DBPedia에서 제공해주는 트리플 구조를 TDB에 저장하고, 사용자 질의 문장에서 트리플을 찾은 뒤 해당 문장의 규칙을 추론하여 SPARQL 쿼리를 생성한 뒤, 마지막으로 Fuseki를 이용해 결과를 출력하는 Q&A시스템을 제안한다. SPARQL 쿼리를 생성함에 있어 질의의 정답을 찾아내는 타겟이 있다는 점과 한국어의 조사와 부사부분에서 쿼리가 변형될 수 있다는 점을 통해 유동적인 쿼리를 생성한다. 그리고 DBPedia에 없는 단어가 질의에서 나타날 수 있기 때문에 이를 정제해주는 작업 또한 필요하다. 한국어는 어절순서가 고정적이지 않다는 점, 조사, 부사에 의해 문장의 의미가 변형되는 또 다른 부분을 파악하여 앞으로 시스템을 개발함에 있어 정확률을 상승시킬 예정이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.