• 제목/요약/키워드: 순간정지 절삭

검색결과 2건 처리시간 0.019초

연속재결정법에 의한 2차원 절삭가공면의 소성스트레인에 관한 연구 (Machined Surface Plastic Strain in Orthogonal Cutting by Subsequent Recrystallizations Technique)

  • 반야풍;김태영;문상돈
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.61-66
    • /
    • 1996
  • The subsequent recrystallizations technique, and experimental strain measurement method by use of recrystallization phenomena, has been successfully applied for the observation of machined surface plastic zones with equivalent plastic strain .epsilon. .geq. 0.5, 0.12 and 0.02 of type 304 stainless steel. The depth of the zone with .epsilon. .geq. 0.5 is very small, 10-15 .mu. m, while those with .epsilon. .geq. 0.12 are 100-200 .mu. m and 200-450 .mu. m, respectively. The depths increase with increasing depth of cut and with decreasing rake angle. The relation between the depth of the zones and the cutting paramenters is shown. The deformation state ahead of the quick-stop cut was also well visualized by the technique.

  • PDF

정밀가공면의 소성스트레인 측정을 위한 새로운 기법의 개발 (A New Technique Development for Measuring Plastic Strain of Precision Machined Surface)

  • 김태영;반야풍;문상돈
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.141-147
    • /
    • 1998
  • A plastically deformed layer in the precision machined surface affects in various forms the physical properties of machined components such as the fatigue strength, the dimensional instability, microcracks and the stress corrosion cracking. These physical properties, so called surface integrity, are very important for designing highly stressed and critically loaded components. Typical plastic strains in the precision machined surface are very difficult to measure, since they are located within a very short distance from the surface and they change very rapidly. A new way is suggested to determine the residual strain in plastically deformed materials by analyzing the plastically deformed layer after a subsequent recrystallization process. This investigation is to explore a new technique for measuring plastic strain in machining applications, and in particular, to and the effect of cutting parameters(rake angle, depth of cut, specific cutting energy), on the plastic strains and strain energy.

  • PDF