• Title/Summary/Keyword: 수확 전

Search Result 687, Processing Time 0.023 seconds

Studies on the physio-chemical properties and the cultivation of oyster mushroom(Pleurotus ostreatus) (느타리버섯의 생리화학적성질(生理化學的性質) 및 재배(栽培)에 관(關)한 연구(硏究))

  • Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.21 no.3
    • /
    • pp.150-184
    • /
    • 1978
  • Nutritional characteristics and physio-chemical properties of mycelial growth and fruitbody formation of oyster mushroom(Pleurotus ostreatus)in synthetic media, the curtural condition for the commerical production in the rice straw and poplar sawdust media, and the changes of the chemical components of the media and mushroom during the cultivation were investigated. The results can be summarized as follows: 1. Among the carbon sources mannitol and sucrose gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while lactose and rhamnose gave no mycelial growth. Also, citric acid, succinic acid, ethyl alcohol and glycerol gave poor fruit-body formation, and acetic acid, formic acid, fumaric acid, n-butyl alcohol, n-propyl alcohol and iso-butyl alcohol inhibited mycelial growth. 2. Among the nitrogen sources peptone gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while D,L-alanine, asparatic acid, glycine and serine gave very poor fruit-body formation, and nitrite nitrogens, L-tryptophan and L-tyrosine inhibited mycelial growth. Inorganic nitrogens and amino acids added to peptone were effective for fruit-body growth, and thus addition of ammonium sulfate, ammonium tartarate, D,L-alanine and L-leucine resulted in about 10% increase fruit-body yield. L-asparic acid about 15%, L-arginine about 20%, L-glutamic acid, and L-lysine about 25%. 3. At C/N ratio of 15.23 fruit-body formation was fast, but the yield decreased, and at C/N ratio of 11.42 fruit-body formation was slow, but the yield increased. Also, at the same C/N ratio the higher the concentration of mannitol and petone, the higher yield was produced. Thus, from the view point of both yield of fruit-body and time required for fruiting the optimum C/N ratio would be 30. 46. 4. Thiamine, potassium dihydrogen phosphate and magnecium sulfate at the concentration of $50{\mu}g%$. 0.2% and 0.02-0.03%, respectively, gave excellent mycelial and fruit-body growth. Among the micronutrients ferrous sulfate, zinc sulfate and manganese sulfate showed synergetic growth promoting effect but lack of manganese resulted in a little reduction in mycelial and fruit-body growth. The optimum concentrati on of each these nutrients was 0.02mg%. 5. Cytosine and indole acetic acid at 0.2-1mg% and 0.01mg%, respectively, increased amount of mycelia, but had no effect on yield of fruit-body. The other purine and pyrimidine bases and plant hormones also had no effect on mycelial and fruit-belly yield. 6. Illumination inhibited mycelial growth, but illumination during the latter part of vegetative growth induced primordia formation. The optimum light intensity and exposure time was 100 to 500 lux and 6-12 hours per day, respectively. Higher intensity of light was injurous, and in darkness only vegetative growth without primordia formation was continued. 7. The optimum temperature for mycelial growth was $25^{\circ}C$ and for fruit-body formation 10 to $15^{\circi}C$. The optimum pH range was from 5.0 to 6.5. The most excellent fry it-body formation were produced from the mycelium grown for 7 to 10 days. The lesser the volume of media, the more rapid the formation of fruit-body; and the lower the yield of fruit-body; and the more the volume of media, the slower the formation of fruit-body, and the higher the yield of fruit-body. The primordia formation was inhibited by $CO_2$. 8. The optimum moisture content for mycelial growth was over 70% in the bottle media of rice straw and poplar sawdust. 10% addition of rice bran to the media exhibited excellent mycelial growth and fruit-body formation, and the addition of calciumcarbonate alone was effective, but the addition of calcium carbonate was ineffective in the presence of rice bran. 9. In the cultivation experiments the total yield of mushroom from the rice straw media was $14.99kg/m^2$, and from the sawdust media $6.52kg/m^2$, 90% of which was produced from the first and second cropping period. The total yield from the rice straw media was about 2.3 times as high as that from the sawdust media. 10. Among the chemical components of the media little change was observed in the content of ash on the dry weight basis, and organic matter content decreased as the cultivation progressed. Moisture content, which was about 79% at the time of spawning, decreased a little during the period of mycelial propagation, after which no change was observed. 11. During the period from spawning to the fourth cropping about 16.7% of the dry matter, about 19.3% of organic matter, and about 40% of nitrogen were lost from the rice straw media; about 7.5% of dry mallet, about 7.6% of organic matter, and about 20% of nitrogen were lost from the sawdust media. For the production of 1kg of mushroom about 232g of organic matter and about 7.0g of nitrogen were consumed from the rice straw media; about 235g of organic matter and about 6.8g of nitrogen were consumed from the sawdust media, 1㎏ of mushroom from either of media contains 82.4 and 82.3g of organic matter and 5.6 and 5.4g of nitrogen, respectively. 12. Total nitrogen content of the two media decreased gradually as the cultivation progressed, and total loss of insoluble nitrogen was greater than that of soluble nitrogen. Content of amino nitrogen continued to increase up to the third cropping time, after which it decreased. 13. In the rice straw media 28.0 and 13.8% of the total pentosan and ${\alpha}$-cellulose, respectively, lost during the whole cultivation period was lost during the period of mycelial growth; in the sawdust media 24.1 and 11.9% of the total pentosan and ${\alpha}$-cellulose, respectively, was lost during the period of mycelial growth. Lignin content in the media began to decrease slightly from the second cropping time, while the content of reduced sugar, trehalose and mannitol continued to increase. C/N ratio of the rice straw media decreased from 33.2 at spawining to 30.0 at ending; that of the sawdust media decreased from 61.3 to 60.0. 14. In both media phosphorus, potassium, manganese and zinc decreased, at magnesium, calcium and copper showed irregular changes, and iron had a tendency to be increased. 15. Enzyme activities are much higher in the rice straw media than in the sawdust media. CMC saccharifying and liquefying activity gradually increased from after mycelial propagation to the second cropping, after which it decreased in both media. Xylanase activity rapidly and greatly increased during the second cropping period rather than the first period. At the start of the third cropping period the activity decreased rapidly in the rice straw media, which was not observed in the sawdust media. Protease activity was highest after mycelial propagation, after which it gradually decreased. The pH of the rice straw media decreased from 6.3 at spawning to 5.0 after fourth cropping; that of the sawdust media decreased from 5.7 to 4.9. 16. The contents of all the components except crude fibre of the mushroom from the rice straw media were higher than those from the sawdust media. Little change was observed in the content of the components of mushroom cropped from the first to the third period, but slight decrease was noticed at the fourth cropping.

  • PDF

Studies on the Germination Characters of Korean Ginseng (Panax ginseng C.A. Meyer) Seed (고려인삼종자(高麗人蔘種子)의 발아특성(發芽特性)에 관(關)한 연구(硏究))

  • Won, Jun Yeon;Jo, Jae Seong
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.47-68
    • /
    • 1988
  • This study was conducted to define the optimal conditions for embryo growth during seed stratification and for breaking dormancy as well as seed germination of stratified ginseng seeds. The experiments were also carried out to detect some materials which were expected to induce seed dormancy in the ginseng seeds. The results summarized as follows; 1. The growth of embryo during seed stratification was significantly inhibited by the existence of endocarp. The fastest embryo growth was resulted at $15^{\circ}C$ and an estimated optimal temperature for embryo growth was about $18^{\circ}C$. 2. There was no significant difference between the embryo growth and germination ratio of ginseng seeds which were sown in seed bed at Aug-5 without seed stratification and that of artificial seed stratification. 3. Embryo growth and germination ratio was significantly inhibited by high temperature treatment at $30^{\circ}C$ for 24 hours or respiration stress by immersing seeds in water for 10 days or more. 4. When the seed stratification was started at $10^{\circ}C$, growth of embryo in the ginseng seeds were almost stopped. But, when the seeds were stratified first at $20^{\circ}C$ for 50 days and next at $10^{\circ}C$ for 50 days, the embryo growth was significantly promoted compared with the embryo growth in the seeds which were stratified at $20^{\circ}C$ for 100 days. 5. The successive embryo growth after seed stratification was significantly accelerated at $10^{\circ}C$ but the seeds chilled at $5^{\circ}C$ for 100 days were resulted in the highest germination ratio as well as the shortest days for germination. 6. The successive embryo growth during chilling treatment and seed germination were significantly inhibited by immersing seeds in water just before chilling treatment or during chilling treatment and by interruption of chilling treatment with raising temperature to $20^{\circ}C$ for 20 days during chilling treatment. 7. The germination ratio of ginseng seeds which finished chilling treatment was highest at $10^{\circ}C$ and 62.5% was the estimated soil moisture for the best germination of ginseng seeds. The ginseng seeds were found to require high amount of oxygen for germination. 8. Only water soluble material in homogenized ginseng seeds showed a significant inhibiting effect on the seed germination of sesame, millet and soybean. Water soluble material dissolved from undehisced ginseng seeds showed stronger inhibiting effect on the seedling growth of sesame than material from dehisced ginseng seeds. Extraction temperature did not influence the inhibiting effect of the material dissolved from ginseng seeds on the seedling growth of sesame. 9. Water soluble materials dissolved from the berry pulps, leaves, fresh roots and dried roots also showed a significant inhibiting effect on the seedling growth of sesame. 10. Water soluble materials dissolved from the ginseng seeds, leaves and fresh roots showed a significant inhibiting effect on the germination of true fungi and the growth of spawn but the growth of phytopathogenic bacteria was not. 11. Among the water soluble materials dissolved from ginseng seeds, the materials of low molecular weight less than 3,000 were resulted a significant inhibiting effect on the seedling growth of sesame and the materials of high molecular weight also showed an inhibiting effect.

  • PDF

Study on the Effect of Deep Fertilization on Paddy Field - Efficiency of Ball Complex Fertilizer Mixed with Zeolite - (수도(水稻)에 대(對)한 심층추비효과(深層追肥効果)에 관(關)한 연구(硏究) - Zeolite 첨가(添加) Ball complex 비료(肥料)의 비효(肥効) -)

  • Kim, Tai-Soon;U., Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.61-67
    • /
    • 1977
  • A study was conducted in order to compare the topdressing method of the conventional fertilizers as control and the deep application method of the ball complex fertilizer newly developed. The ball complex fertilizer consisted of 5% of nitrogen, 5% of phosphorus, and 7% of potassium. Basal application of nitrogen for the rice plant was the same for both control plots and ball complex plots. One ball complex fertilizer per four hills was applied at depth of 12~13cm 35days before heading stage while control plot received three times topdressing at different growth stages as usual practice. The results obtained were as follows. 1. The ball complex fertilizer applied in the soil was continuously utilized by the rice plants until harvest time while nitrogen and potassium uptake of control plots was reduced rapidly after heading stage. Daily uptake of nitrogen and potassium per hill at maturing stage were 0.45mg and 0.68mg in control plots, but 4.80mg and 7.0mg respectively in ball complex plots. 2. Dry matter productivity of the rice plant in control plots, well coinciding with nutrients uptake pattern, was maximum just after heading stage decreased at maturing stage. But dry matter productivity in ball complex plots was much higher at maturing stage than at heading stage. 3. Ball complex application increased effective tillering rate, causing higher panicle number per hill. 4. Ball complex application brought about 528kg/10a of hulled grain yield while the conventional practice 423kg/10a. 5. Deep application of ball complex was superior to usual practice in terms of yield components such as panicle number per hill, filled grain number per panicle, maturing rate, and 1,000 grain weight. 6. From the morphological characteristics point of view, the deep application of ball complex made the flag leaf and the 2nd leaf heavier, larger and broader as compared to control treatment. 7. It is considered that by applying the ball complex fertilizer at depth of 12~13cm sufficient amount of nitrogen and potassium could be utilized by rice plants during the maturing stage and assimilated in the leaf blade, consequently making the flag leaf and the 2nd leaf bigger and healthier. The fact can easily explain that the ball complex plots had higher capacity of photosynthesis, less discoloration of lower leaves, bigger leaf area index, and better grain yield as compared to the conventional practice. In conclusion the deep application method of the ball complex fertilizer was superior to the routine topdressing method of the usual fertilizers.

  • PDF

Studies on the Induction of Available Mutants of Takju Yeast by UV light Irradiation (part 2) -On the Physiological Characteristics of the Mutants- (자외선조사(紫外線照射)에 의한 탁주효모(酵母)의 변이주육성(變異株育成)에 관한 연구 (제 2 보) -변이주(變異株)의 생리적성질(生理的性質)에 관하여)

  • Kim, Chan-Jo;Oh, Man-Jin;Kim, Seung-Yul
    • Applied Biological Chemistry
    • /
    • v.18 no.1
    • /
    • pp.16-22
    • /
    • 1975
  • This experiment was carried out to investigate the physiological characteristics of two original yeasts, 5-Y-5 and 6-Y-6, which selected from 24 Takju yeasts and three mutants, 30-24,30-81 and 40-27. induced from two original yeasts by the irradiation of UV light. The results were summarized as follows. 1) Alcohol tolerances of three mutants were decreased in some degree as compared with those of original yeasts. 2) Tolerances of lactic and citric acids of acid producing mutant 30-81, was increased than those of original yeasts. 3) In the case of using ammonium sulfate as a nitrogen source, two original yeasts and three mutants required Ca-pantothenate as a essential growth factor and four strains of yeasts except the mutant, 30-81, required biotin as a stimulated growth factor, When asparagine was used as a nitrogen source, two original yeasts and three mutants showed the same as above result but the stimulated effect of biotin was far less. 4) Propagation powers of the mutants were weaken than those of original yeasts, particular that of acid producing mutant, 30-81, was the weakest in the three mutants. 5) The optimum temperature for fermentation of original yeasts were $30^{\circ}C\;to\;35^{\circ}C$ but three mutants were $25^{\circ}C\;to\;30^{\circ}C$. 6) The optimum pH for fermentation of original yeasts were pH 5 to 6, and there is no appreciable difference between original yeasts and three mutants. The fermentation power of mutant,30-81, was decreased more rapidly than those of other mutants according to approach neutral. Three mutants were more sensible to heat than original yeasts. 7) Two original yeasts and three mutants were inhibited more over 20 percent of sugar for fermentation and three mutants were more sensible to sugar concentration than original yeasts.

  • PDF

A New Medium Maturing and High Quality Rice Variety with Lodging and Disease Resistance, 'Haeoreumi' (중생 고품질 내도복 내병성 벼 품종 '해오르미')

  • Kim, Jeong-Il;Park, No-Bong;Park, Dong-Soo;Lee, Ji-Yoon;Yeo, Un-Sang;Chang, Jae-Ki;Kang, Jung-Hun;Oh, Byeong-Geun;Kwon, Oh-Deog;Kwak, Do-Yeon;Lee, Jong-Hee;Yi, Gihwan;Kim, Chun-Song;Song, You-Cheon;Cho, Jun-Hyun;Nam, Min-Hee;Choung, Jin-Il;Shin, Mun-Sik;Jeon, Myeong-Gi;Yang, Sae-Jun;Kang, Hang-Weon;Ahn, Jin-Gon;Kim, Jae-Kyu
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.638-644
    • /
    • 2010
  • A new rice variety 'Haeoreumi' is a japonica rice (Oryza sativa L.) with lodging tolerance, resistance to rice stripe virus (RSV) and bacterial leaf blight (BLB), and high grain quality. It was developed by the rice breeding team of Yeongdeog Substation, National Institute of Crop Science (NICS), RDA in 2008. This variety was derived from a cross between 'Milyang165' with good grain quality and lodging resistance, and 'Haepyeongbyeo' with wind tolerance in winter season of 2000/2001. A promising line, YR22375-B-B-1, selected by pedigree breeding method, was designated as the name of 'Yeongdeog46' in 2005. 'Yeongdeog46' was released as the name of 'Haeoreumi' in 2008 after the local adaptability test that was carried out at nine locations from 2006 to 2008. 'Haeoreumi' has 74 cm short culm length as and medium maturating growth duration. This variety showed resistance to $K_1,\;K_2$, and $K_3$ races of bacterial blight, and stripe virus and moderate resistant to leaf blast disease with durable resistance, and also has tolerance to unfavorable environment such as cold, dry and cold salty wind. 'Haeoreumi' has translucent and clear milled rice kernel without white core and white belly rice, and good eating quality as a result of panel test. The yield potential of 'Haeoreumi' in milled rice is about 5.58MT/ha at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to Middle plain, mid-west costal area, and east-south coastal area.

Improvement of Certification Criteria based on Analysis of On-site Investigation of Good Agricultural Practices(GAP) for Ginseng (인삼 GAP 인증기준의 현장실천평가결과 분석에 따른 인증기준 개선방안)

  • Yoon, Deok-Hoon;Nam, Ki-Woong;Oh, Soh-Young;Kim, Ga-Bin
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.40-51
    • /
    • 2019
  • Ginseng has a unique production system that is different from those used for other crops. It is subject to the Ginseng Industry Act., requires a long-term cultivation period of 4-6 years, involves complicated cultivation characteristics whereby ginseng is not produced in a single location, and many ginseng farmers engage in mixed-farming. Therefore, to bring the production of Ginseng in line with GAP standards, it is necessary to better understand the on-site practices of Ginseng farmers according to established control points, and to provide a proper action plan for improving efficiency. Among ginseng farmers in Korea who applied for GAP certification, 77.6% obtained it, which is lower than the 94.1% of farmers who obtained certification for other products. 13.7% of the applicants were judged to be unsuitable during document review due to their use of unregistered pesticides and soil heavy metals. Another 8.7% of applicants failed to obtain certification due to inadequate management results. This is a considerably higher rate of failure than the 5.3% incompatibility of document inspection and 0.6% incompatibility of on-site inspection, which suggests that it is relatively more difficult to obtain GAP certification for ginseng farming than for other crops. Ginseng farmers were given an average of 2.65 points out of 10 essential control points and a total 72 control points, which was slightly lower than the 2.81 points obtained for other crops. In particular, ginseng farmers were given an average of 1.96 points in the evaluation of compliance with the safe use standards for pesticides, which was much lower than the average of 2.95 points for other crops. Therefore, it is necessary to train ginseng farmers to comply with the safe use of pesticides. In the other essential control points, the ginseng farmers were rated at an average of 2.33 points, lower than the 2.58 points given for other crops. Several other areas of compliance in which the ginseng farmers also rated low in comparison to other crops were found. These inclued record keeping over 1 year, record of pesticide use, pesticide storages, posts harvest storage management, hand washing before and after work, hygiene related to work clothing, training of workers safety and hygiene, and written plan of hazard management. Also, among the total 72 control points, there are 12 control points (10 required, 2 recommended) that do not apply to ginseng. Therefore, it is considered inappropriate to conduct an effective evaluation of the ginseng production process based on the existing certification standards. In conclusion, differentiated certification standards are needed to expand GAP certification for ginseng farmers, and it is also necessary to develop programs that can be implemented in a more systematic and field-oriented manner to provide the farmers with proper GAP management education.

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.