• Title/Summary/Keyword: 수화반응 촉진제

Search Result 27, Processing Time 0.032 seconds

Chemical Reactions in Surfactant Solutions (Ⅳ) : Micellar Rate Effect on Reactions of Hydroxide and o-Iodosobenzoate Ions with Organic Phosphinates (계면활성제 용액속에서의 화학반응 (제 4 보) : $OH^-$ 및 o-Iodosobenzoate 이온에 의한 유기 포스피네이트의 탈인산화 반응에 미치는 CTAX 미셀의 영향)

  • Hong, Yeong Seok;Kim, Hyeon Muk
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.753-762
    • /
    • 1994
  • Dephosphorylation of diphenyl- or isopropylphenyl-4-nitrophenylphosphinate (DPNPIN or IPNPIN) mediated by $OH^-$ or o-iodosobenzoate ion ($IB^-$) are relatively slow in aqueous solution. The reactions in CTAX micellar solutions are, however, very accelerated, because CTAX micelles can accommodate both reactants in their Stern layer in which they can easily react, while hydrophilic $OH^-$(or $IB^-$) and hydrophobic phosphinates are not mixed in water. Even though the concentrations (> $10^{-3}$ M) of $OH^-$(or $IB^-$) in CTAX solutions are much larger amounts than those ($6{\times}10^{-6}$ M) of phosphinates, the rate constants of the dephosphorylations are largely influenced by change of the concentration of the ions, which means that the reactions are not followed by the pseudo first order kinetics. In comparison to effect of the counter ions of CTAX in the reactions, CTACl is more effective on the dephosphorylation of DPNPIN (or IPNPIN) than CTABr due to easier expelling of $Cl^-$ ion by $OH^-$(or $IB^-$) ion from the micelle, because of easier solvation $Cl^-$ ion by water molecules. The reactivity of IPNPIN with $OH^-$(or $IB^-$) is lower than that of DPNPIN. The reason seems that the 'bulky' isopropyl group of IPNPIN hinders the attack of the nucleophiles. The mechanism of reaction of IPNPIN with IB- ion concluded as 'nucleophilic' instead of 'general basic' by a trapping experiment and a measured kinetic isotope effect.

  • PDF

A Study on Setting Time and Early Strength of Tablet-Shaped Accelerators (타블렛 형태 급결제가 콘크리트의 응결시간 및 조기강도에 미치는 영향에 관한 연구)

  • Ryou, Jae-Suk;Lee, Yong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.347-352
    • /
    • 2011
  • When concrete is worked in cold weather, the methods of using hot air, water and aggregate heating, accelerators are used to prevent early frosting and to improve early strength. But these methods raise problems such as implementation difficulty, high cost, and energy losses. Among the available cold weathering methods, accelerator method is the most economical but with the drawbacks of rapid setting and insufficient workability in the initial hydration stage. Therefore, the tablet method usually used for pharmaceutical field was applied to the accelerator method to compare the controlled reaction time of the new and old accelerator method. Based on the test results, physical and mechanical properties of concrete were tested and the possibility of delaying initial reactions to increase the total reaction time was evaluated. The results showed that when both accelerators and tablet were used, setting-time decreased. Physical properties of concrete were optimal for tablet 0.5% and 1.0%. Also, accelerator 0.5%, tablet 0.5% and 1.0% showed good early strengths.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

Physical Properties of Insulating Composite Materials Using Natural Cellulose and Porous Ceramic Balls as a Core Materials (천연섬유질과 다공성 세라믹볼을 심재로 사용한 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.501-507
    • /
    • 2011
  • To develop environmental-friendly insulating composite materials, natural cellulose and porous ceramic balls were used as core materials and activated Hwangtoh was used as a binder. Various specimens were prepared with different water/binder ratios and core material/binder ratios. The physical properties of these specimens were then investigated through compressive strengths, flexural strengths, absorption test, hot water resistance test, pore analysis, thermal conductivity, and observation of micro-structures using scanning electron microscope. Results showed that the maximum compressive strength varied appreciably with the water/binder ratios and core material/binder ratios, but the flexural strength increased with the core material/binder ratios regardless of water/binder ratios. The compressive strength and the flexural strength measured after the hot water resistance test decreased remarkably compared to those measured before test. The pore analysis measured after the hot water resistance test showed that total pore volume, porosity and average pore diameter decreased, while bulk density increased by the acceleration of hydration reaction of binder in the hot water. The thermal conductivity decreased gradually with an increase of core material/binder ratios. It can be evaluated that the composite insulation materials having good insulating properties and mechanical strengths can be used in the field.

Properties of Non-Sintered Cement Mortar using Alkali and Sulfate Mixed Stimulants Accroding to Curing Method (양생방법에 따른 알칼리 및 황산염 복합자극제를 사용한 비소성 시멘트 모르타르의 특성)

  • Park, Sung-Joon;Kim, Ji-Hoon;Hyung, Won-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • Entering the 20th century since the industrial revolution, the cement has been widely used in the field of construction and civil engineering due to the remarkable development of construction industry. However, result from that development, each kind of industrial by-products and waste and the carbon dioxide generated in the process of cement production cause air pollution and environmental damage so earth is getting sick now slowly. Therefore, we have to recognize importance about this. It means that the time taking specific and long-term measures have come. In this research paper, as substitution of the cement generating environmental pollution, we investigate the hydration reaction of non-Sintered Cement mortar mixed with GBFS, active stimulant of alkaline and sulphate series by using SEM and XRD, mechanical and chemical properties according to the curing method. As a result of this experiment, NSC realized outstanding strength for water curing and steam curing. It means that it has a good possibility as substitution of cement. From now on, it can be used for structure satisfying specific standard. We expect to find a substitution of outstanding cement by progressing continuous research making the best use of pros and cons according to the curing method.

Durability Characteristics of Concrete with Nano Level Ceramic Based Coating (나노합성 세라믹계 도장재를 도포한 콘크리트의 내구성능)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Han, Seung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2007
  • This study performed several tests for the durability of the concrete coated with nano synthesis ceramics which do not contain volatile organic compounds harmful to environment. The tests were adhesion test on dry and humid concrete, SEM test, MIP analysis, carbonation, chloride diffusion by electronic facilitation, freezing-thawing resistance, alkaline resistance, and brine resistance test. In the adhesion test on dry and humid concrete, nano synthesis ceramics coating produced the highest results among all the coatings tested. Nano synthesis ceramics adhered solidly on the concrete surface. The adhesive strength seemed to result from the hydrogen bond between nano synthesis ceramics which are inorganic and generated by hydrolysis and re-condensation reaction and the concrete's hydrates such as calcium silicate aluminate or calcium silicate hydrate. SEM test and MIP analysis results show surface structure with finest crevices pore in the nano synthesis ceramics coating applied concretes. In the carbonation, chloride diffusion, and freezing-thawing resistance tests, the concretes with nano synthesis ceramics coating indicated the best results. Based on these test results, further progress in application of nano synthesis ceramics coatings to various concrete structures including costal structures and sewerage arrangements can be expected.

Occurrence and Cenesis of Perlite from the Beomgockri Group in Janggi Area (장기지역 범곡리층군에 부존되는 진주암의 산출상태와 생성관계)

  • Noh Jin Hwan;Hong Jin-Sung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.277-288
    • /
    • 2005
  • Perlite, a hydrated volcanic glass, occurs mainly as a bed-like body, and is distributed intermittently along the unconformity surface between the Beomgockri Group and its lower formations, viz. Janggi Group. The perlite is intimately associated with surrounding pumiceous welded tuff and rhyodacites in space and time. Compared to the typical perlite, the perlite is rather silica-poor and impure, and thus, includes lots of phenocrysts and rock fragments. Nearly the perlite is compositionally rather close to a pitchstone than a perlite in water contents. Petrographic comparison between perlite and associated volcanic to volcaniclastic rocks indicates that pumiceous welded tuff and rhyodacite seem to be Protolith of the Perlite. A Zr/$TiO_{2}$-Nb/Y diagram and field occurrence of perlite and their protolithic rocks also conforms the above interpretation. Kn addition, remnant vesicles in perlite strongly reflect that the precursor of perlitic glass appeared to be pumice fragment as well as volcanic glass. The perlite was diagenetically formed by way of a pervasive water-rock interaction at the deposition of the Manghaesan Formation in lacustrine environment. During perlitization, $SiO_{2}$ and alkali tend to be consistently depleted. Preexisting system of the Beomgockri Group based on the perlite formation should be corrected, because the perlite was formed diagenetically without lateral persistence in its occurrence.